神经网络设计的经颅声学超材料参数反演。

IF 5 Q1 ENGINEERING, BIOMEDICAL
BME frontiers Pub Date : 2023-09-25 eCollection Date: 2023-01-01 DOI:10.34133/bmef.0030
Yuming Yang, Dong Jiang, Qiongwen Zhang, Xiaoxia Le, Tao Chen, Huilong Duan, Yinfei Zheng
{"title":"神经网络设计的经颅声学超材料参数反演。","authors":"Yuming Yang,&nbsp;Dong Jiang,&nbsp;Qiongwen Zhang,&nbsp;Xiaoxia Le,&nbsp;Tao Chen,&nbsp;Huilong Duan,&nbsp;Yinfei Zheng","doi":"10.34133/bmef.0030","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective:</i> The objective of this work is to investigate the mapping relationship between transcranial ultrasound image quality and transcranial acoustic metamaterial parameters using inverse design methods. <i>Impact Statement:</i> Our study provides insights into inverse design methods and opens the route to guide the preparation of transcranial acoustic metamaterials. <i>Introduction:</i> The development of acoustic metamaterials has enabled the exploration of cranial ultrasound, and it has been found that the influence of the skull distortion layer on acoustic waves can be effectively eliminated by adjusting the parameters of the acoustic metamaterial. However, the interaction mechanism between transcranial ultrasound images and transcranial acoustic metamaterial parameters is unknown. <i>Methods:</i> In this study, 1,456 transcranial ultrasound image datasets were used to explore the mapping relationship between the quality of transcranial ultrasound images and the parameters of transcranial acoustic metamaterials. <i>Results:</i> The multioutput parameter prediction model of transcranial metamaterials based on deep back-propagation neural network was built, and metamaterial parameters under transcranial image evaluation indices are predicted using the prediction model. <i>Conclusion:</i> This inverse big data design approach paves the way for guiding the preparation of transcranial metamaterials.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"4 ","pages":"0030"},"PeriodicalIF":5.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521689/pdf/","citationCount":"1","resultStr":"{\"title\":\"Transcranial Acoustic Metamaterial Parameters Inverse Designed by Neural Networks.\",\"authors\":\"Yuming Yang,&nbsp;Dong Jiang,&nbsp;Qiongwen Zhang,&nbsp;Xiaoxia Le,&nbsp;Tao Chen,&nbsp;Huilong Duan,&nbsp;Yinfei Zheng\",\"doi\":\"10.34133/bmef.0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective:</i> The objective of this work is to investigate the mapping relationship between transcranial ultrasound image quality and transcranial acoustic metamaterial parameters using inverse design methods. <i>Impact Statement:</i> Our study provides insights into inverse design methods and opens the route to guide the preparation of transcranial acoustic metamaterials. <i>Introduction:</i> The development of acoustic metamaterials has enabled the exploration of cranial ultrasound, and it has been found that the influence of the skull distortion layer on acoustic waves can be effectively eliminated by adjusting the parameters of the acoustic metamaterial. However, the interaction mechanism between transcranial ultrasound images and transcranial acoustic metamaterial parameters is unknown. <i>Methods:</i> In this study, 1,456 transcranial ultrasound image datasets were used to explore the mapping relationship between the quality of transcranial ultrasound images and the parameters of transcranial acoustic metamaterials. <i>Results:</i> The multioutput parameter prediction model of transcranial metamaterials based on deep back-propagation neural network was built, and metamaterial parameters under transcranial image evaluation indices are predicted using the prediction model. <i>Conclusion:</i> This inverse big data design approach paves the way for guiding the preparation of transcranial metamaterials.</p>\",\"PeriodicalId\":72430,\"journal\":{\"name\":\"BME frontiers\",\"volume\":\"4 \",\"pages\":\"0030\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521689/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BME frontiers\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.34133/bmef.0030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/bmef.0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

摘要

目的:利用逆向设计方法研究经颅超声图像质量与经颅声学超材料参数之间的映射关系。影响声明:我们的研究为逆向设计方法提供了见解,并为指导经颅声学超材料的制备开辟了道路。引言:声学超材料的发展使颅骨超声得以探索,研究发现,通过调整声学超材料参数,可以有效消除颅骨畸变层对声波的影响。然而,经颅超声图像与经颅声学超材料参数之间的相互作用机制尚不清楚。方法:本研究使用1456个经颅超声图像数据集,探讨经颅超声成像质量与经颅声学超材料参数之间的映射关系。结果:建立了基于深度反向传播神经网络的经颅超材料多输出参数预测模型,并利用该预测模型对经颅图像评价指标下的超材料参数进行了预测。结论:这种反向大数据设计方法为指导经颅超材料的制备铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transcranial Acoustic Metamaterial Parameters Inverse Designed by Neural Networks.

Transcranial Acoustic Metamaterial Parameters Inverse Designed by Neural Networks.

Transcranial Acoustic Metamaterial Parameters Inverse Designed by Neural Networks.

Transcranial Acoustic Metamaterial Parameters Inverse Designed by Neural Networks.

Objective: The objective of this work is to investigate the mapping relationship between transcranial ultrasound image quality and transcranial acoustic metamaterial parameters using inverse design methods. Impact Statement: Our study provides insights into inverse design methods and opens the route to guide the preparation of transcranial acoustic metamaterials. Introduction: The development of acoustic metamaterials has enabled the exploration of cranial ultrasound, and it has been found that the influence of the skull distortion layer on acoustic waves can be effectively eliminated by adjusting the parameters of the acoustic metamaterial. However, the interaction mechanism between transcranial ultrasound images and transcranial acoustic metamaterial parameters is unknown. Methods: In this study, 1,456 transcranial ultrasound image datasets were used to explore the mapping relationship between the quality of transcranial ultrasound images and the parameters of transcranial acoustic metamaterials. Results: The multioutput parameter prediction model of transcranial metamaterials based on deep back-propagation neural network was built, and metamaterial parameters under transcranial image evaluation indices are predicted using the prediction model. Conclusion: This inverse big data design approach paves the way for guiding the preparation of transcranial metamaterials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信