用于无标记血液学分析的血液涂片的虚拟染色、分割和分类。

IF 5 Q1 ENGINEERING, BIOMEDICAL
BME frontiers Pub Date : 2022-07-01 eCollection Date: 2022-01-01 DOI:10.34133/2022/9853606
Nischita Kaza, Ashkan Ojaghi, Francisco E Robles
{"title":"用于无标记血液学分析的血液涂片的虚拟染色、分割和分类。","authors":"Nischita Kaza, Ashkan Ojaghi, Francisco E Robles","doi":"10.34133/2022/9853606","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective and Impact Statement</i>. We present a fully automated hematological analysis framework based on single-channel (single-wavelength), label-free deep-ultraviolet (UV) microscopy that serves as a fast, cost-effective alternative to conventional hematology analyzers. <i>Introduction</i>. Hematological analysis is essential for the diagnosis and monitoring of several diseases but requires complex systems operated by trained personnel, costly chemical reagents, and lengthy protocols. Label-free techniques eliminate the need for staining or additional preprocessing and can lead to faster analysis and a simpler workflow. In this work, we leverage the unique capabilities of deep-UV microscopy as a label-free, molecular imaging technique to develop a deep learning-based pipeline that enables virtual staining, segmentation, classification, and counting of white blood cells (WBCs) in single-channel images of peripheral blood smears. <i>Methods</i>. We train independent deep networks to virtually stain and segment grayscale images of smears. The segmented images are then used to train a classifier to yield a quantitative five-part WBC differential. <i>Results.</i> Our virtual staining scheme accurately recapitulates the appearance of cells under conventional Giemsa staining, the gold standard in hematology. The trained cellular and nuclear segmentation networks achieve high accuracy, and the classifier can achieve a quantitative five-part differential on unseen test data. <i>Conclusion</i>. This proposed automated hematology analysis framework could greatly simplify and improve current complete blood count and blood smear analysis and lead to the development of a simple, fast, and low-cost, point-of-care hematology analyzer.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":"9853606"},"PeriodicalIF":5.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521747/pdf/","citationCount":"0","resultStr":"{\"title\":\"Virtual Staining, Segmentation, and Classification of Blood Smears for Label-Free Hematology Analysis.\",\"authors\":\"Nischita Kaza, Ashkan Ojaghi, Francisco E Robles\",\"doi\":\"10.34133/2022/9853606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective and Impact Statement</i>. We present a fully automated hematological analysis framework based on single-channel (single-wavelength), label-free deep-ultraviolet (UV) microscopy that serves as a fast, cost-effective alternative to conventional hematology analyzers. <i>Introduction</i>. Hematological analysis is essential for the diagnosis and monitoring of several diseases but requires complex systems operated by trained personnel, costly chemical reagents, and lengthy protocols. Label-free techniques eliminate the need for staining or additional preprocessing and can lead to faster analysis and a simpler workflow. In this work, we leverage the unique capabilities of deep-UV microscopy as a label-free, molecular imaging technique to develop a deep learning-based pipeline that enables virtual staining, segmentation, classification, and counting of white blood cells (WBCs) in single-channel images of peripheral blood smears. <i>Methods</i>. We train independent deep networks to virtually stain and segment grayscale images of smears. The segmented images are then used to train a classifier to yield a quantitative five-part WBC differential. <i>Results.</i> Our virtual staining scheme accurately recapitulates the appearance of cells under conventional Giemsa staining, the gold standard in hematology. The trained cellular and nuclear segmentation networks achieve high accuracy, and the classifier can achieve a quantitative five-part differential on unseen test data. <i>Conclusion</i>. This proposed automated hematology analysis framework could greatly simplify and improve current complete blood count and blood smear analysis and lead to the development of a simple, fast, and low-cost, point-of-care hematology analyzer.</p>\",\"PeriodicalId\":72430,\"journal\":{\"name\":\"BME frontiers\",\"volume\":\"2022 \",\"pages\":\"9853606\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521747/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BME frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/2022/9853606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2022/9853606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目标和影响声明。我们提出了一种基于单通道(单波长)、无标签深紫外(UV)显微镜的全自动血液学分析框架,该框架是传统血液学分析仪的快速、经济高效的替代方案。介绍血液学分析对于几种疾病的诊断和监测至关重要,但需要由训练有素的人员操作的复杂系统、昂贵的化学试剂和冗长的协议。无标签技术消除了染色或额外预处理的需要,可以实现更快的分析和更简单的工作流程。在这项工作中,我们利用深紫外显微镜作为一种无标记的分子成像技术的独特能力,开发了一种基于深度学习的管道,可以在外周血涂片的单通道图像中对白细胞(WBC)进行虚拟染色、分割、分类和计数。方法。我们训练独立的深度网络来对涂抹的灰度图像进行虚拟染色和分割。然后使用分割的图像来训练分类器以产生定量的五部分WBC微分。后果我们的虚拟染色方案准确地再现了传统吉姆萨染色(血液学的金标准)下细胞的外观。经过训练的细胞和核分割网络实现了高精度,分类器可以对看不见的测试数据实现定量的五部分差分。结论这种提出的自动化血液学分析框架可以极大地简化和改进目前的全血计数和血液涂片分析,并导致开发一种简单、快速、低成本的护理点血液学分析仪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Virtual Staining, Segmentation, and Classification of Blood Smears for Label-Free Hematology Analysis.

Virtual Staining, Segmentation, and Classification of Blood Smears for Label-Free Hematology Analysis.

Virtual Staining, Segmentation, and Classification of Blood Smears for Label-Free Hematology Analysis.

Virtual Staining, Segmentation, and Classification of Blood Smears for Label-Free Hematology Analysis.

Objective and Impact Statement. We present a fully automated hematological analysis framework based on single-channel (single-wavelength), label-free deep-ultraviolet (UV) microscopy that serves as a fast, cost-effective alternative to conventional hematology analyzers. Introduction. Hematological analysis is essential for the diagnosis and monitoring of several diseases but requires complex systems operated by trained personnel, costly chemical reagents, and lengthy protocols. Label-free techniques eliminate the need for staining or additional preprocessing and can lead to faster analysis and a simpler workflow. In this work, we leverage the unique capabilities of deep-UV microscopy as a label-free, molecular imaging technique to develop a deep learning-based pipeline that enables virtual staining, segmentation, classification, and counting of white blood cells (WBCs) in single-channel images of peripheral blood smears. Methods. We train independent deep networks to virtually stain and segment grayscale images of smears. The segmented images are then used to train a classifier to yield a quantitative five-part WBC differential. Results. Our virtual staining scheme accurately recapitulates the appearance of cells under conventional Giemsa staining, the gold standard in hematology. The trained cellular and nuclear segmentation networks achieve high accuracy, and the classifier can achieve a quantitative five-part differential on unseen test data. Conclusion. This proposed automated hematology analysis framework could greatly simplify and improve current complete blood count and blood smear analysis and lead to the development of a simple, fast, and low-cost, point-of-care hematology analyzer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信