用于基于深度学习的皮肤损伤分类的低成本高性能数据增强。

IF 5 Q1 ENGINEERING, BIOMEDICAL
BME frontiers Pub Date : 2022-04-26 eCollection Date: 2022-01-01 DOI:10.34133/2022/9765307
Shuwei Shen, Mengjuan Xu, Fan Zhang, Pengfei Shao, Honghong Liu, Liang Xu, Chi Zhang, Peng Liu, Peng Yao, Ronald X Xu
{"title":"用于基于深度学习的皮肤损伤分类的低成本高性能数据增强。","authors":"Shuwei Shen, Mengjuan Xu, Fan Zhang, Pengfei Shao, Honghong Liu, Liang Xu, Chi Zhang, Peng Liu, Peng Yao, Ronald X Xu","doi":"10.34133/2022/9765307","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective and Impact Statement</i>. There is a need to develop high-performance and low-cost data augmentation strategies for intelligent skin cancer screening devices that can be deployed in rural or underdeveloped communities. The proposed strategy can not only improve the classification performance of skin lesions but also highlight the potential regions of interest for clinicians' attention. This strategy can also be implemented in a broad range of clinical disciplines for early screening and automatic diagnosis of many other diseases in low resource settings. <i>Methods</i>. We propose a high-performance data augmentation strategy of search space 10<sup>1</sup>, which can be combined with any model through a plug-and-play mode and search for the best argumentation method for a medical database with low resource cost. <i>Results</i>. With EfficientNets as a baseline, the best BACC of HAM10000 is 0.853, outperforming the other published models of \"single-model and no-external-database\" for ISIC 2018 Lesion Diagnosis Challenge (Task 3). The best average AUC performance on ISIC 2017 achieves 0.909 (±0.015), exceeding most of the ensembling models and those using external datasets. Performance on Derm7pt archives the best BACC of 0.735 (±0.018) ahead of all other related studies. Moreover, the model-based heatmaps generated by Grad-CAM++ verify the accurate selection of lesion features in model judgment, further proving the scientific rationality of model-based diagnosis. <i>Conclusion</i>. The proposed data augmentation strategy greatly reduces the computational cost for clinically intelligent diagnosis of skin lesions. It may also facilitate further research in low-cost, portable, and AI-based mobile devices for skin cancer screening and therapeutic guidance.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":"9765307"},"PeriodicalIF":5.0000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521644/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Low-Cost High-Performance Data Augmentation for Deep Learning-Based Skin Lesion Classification.\",\"authors\":\"Shuwei Shen, Mengjuan Xu, Fan Zhang, Pengfei Shao, Honghong Liu, Liang Xu, Chi Zhang, Peng Liu, Peng Yao, Ronald X Xu\",\"doi\":\"10.34133/2022/9765307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective and Impact Statement</i>. There is a need to develop high-performance and low-cost data augmentation strategies for intelligent skin cancer screening devices that can be deployed in rural or underdeveloped communities. The proposed strategy can not only improve the classification performance of skin lesions but also highlight the potential regions of interest for clinicians' attention. This strategy can also be implemented in a broad range of clinical disciplines for early screening and automatic diagnosis of many other diseases in low resource settings. <i>Methods</i>. We propose a high-performance data augmentation strategy of search space 10<sup>1</sup>, which can be combined with any model through a plug-and-play mode and search for the best argumentation method for a medical database with low resource cost. <i>Results</i>. With EfficientNets as a baseline, the best BACC of HAM10000 is 0.853, outperforming the other published models of \\\"single-model and no-external-database\\\" for ISIC 2018 Lesion Diagnosis Challenge (Task 3). The best average AUC performance on ISIC 2017 achieves 0.909 (±0.015), exceeding most of the ensembling models and those using external datasets. Performance on Derm7pt archives the best BACC of 0.735 (±0.018) ahead of all other related studies. Moreover, the model-based heatmaps generated by Grad-CAM++ verify the accurate selection of lesion features in model judgment, further proving the scientific rationality of model-based diagnosis. <i>Conclusion</i>. The proposed data augmentation strategy greatly reduces the computational cost for clinically intelligent diagnosis of skin lesions. It may also facilitate further research in low-cost, portable, and AI-based mobile devices for skin cancer screening and therapeutic guidance.</p>\",\"PeriodicalId\":72430,\"journal\":{\"name\":\"BME frontiers\",\"volume\":\"2022 \",\"pages\":\"9765307\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2022-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521644/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BME frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/2022/9765307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2022/9765307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目标和影响声明。需要为癌症智能皮肤筛查设备开发高性能和低成本的数据增强策略,这些设备可以部署在农村或欠发达社区。所提出的策略不仅可以提高皮肤病变的分类性能,还可以突出临床医生关注的潜在兴趣区域。这一策略也可以在广泛的临床学科中实施,用于在低资源环境中对许多其他疾病进行早期筛查和自动诊断。方法。我们提出了一种搜索空间101的高性能数据扩充策略,该策略可以通过即插即用模式与任何模型相结合,以低资源成本搜索医学数据库的最佳论证方法。后果以EfficientNets为基线,HAM10000的最佳BACC为0.853,优于ISIC 2018损伤诊断挑战赛(任务3)中“单一模型且无外部数据库”的其他已发表模型。ISIC 2017的最佳平均AUC性能达到0.909(±0.015),超过了大多数组合模型和使用外部数据集的模型。Derm7pt的表现显示出最佳BACC为0.735(±0.018),领先于所有其他相关研究。此外,Grad CAM++生成的基于模型的热图验证了模型判断中病变特征的准确选择,进一步证明了基于模型诊断的科学合理性。结论所提出的数据增强策略大大降低了临床智能诊断皮肤病变的计算成本。它还可以促进低成本、便携式和基于人工智能的移动设备的进一步研究,用于皮肤癌症筛查和治疗指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Low-Cost High-Performance Data Augmentation for Deep Learning-Based Skin Lesion Classification.

A Low-Cost High-Performance Data Augmentation for Deep Learning-Based Skin Lesion Classification.

A Low-Cost High-Performance Data Augmentation for Deep Learning-Based Skin Lesion Classification.

A Low-Cost High-Performance Data Augmentation for Deep Learning-Based Skin Lesion Classification.

Objective and Impact Statement. There is a need to develop high-performance and low-cost data augmentation strategies for intelligent skin cancer screening devices that can be deployed in rural or underdeveloped communities. The proposed strategy can not only improve the classification performance of skin lesions but also highlight the potential regions of interest for clinicians' attention. This strategy can also be implemented in a broad range of clinical disciplines for early screening and automatic diagnosis of many other diseases in low resource settings. Methods. We propose a high-performance data augmentation strategy of search space 101, which can be combined with any model through a plug-and-play mode and search for the best argumentation method for a medical database with low resource cost. Results. With EfficientNets as a baseline, the best BACC of HAM10000 is 0.853, outperforming the other published models of "single-model and no-external-database" for ISIC 2018 Lesion Diagnosis Challenge (Task 3). The best average AUC performance on ISIC 2017 achieves 0.909 (±0.015), exceeding most of the ensembling models and those using external datasets. Performance on Derm7pt archives the best BACC of 0.735 (±0.018) ahead of all other related studies. Moreover, the model-based heatmaps generated by Grad-CAM++ verify the accurate selection of lesion features in model judgment, further proving the scientific rationality of model-based diagnosis. Conclusion. The proposed data augmentation strategy greatly reduces the computational cost for clinically intelligent diagnosis of skin lesions. It may also facilitate further research in low-cost, portable, and AI-based mobile devices for skin cancer screening and therapeutic guidance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信