生物可吸收多层光子腔作为区域组织温度的无束缚测量的临时植入物。

IF 5 Q1 ENGINEERING, BIOMEDICAL
BME frontiers Pub Date : 2021-01-15 eCollection Date: 2021-01-01 DOI:10.34133/2021/8653218
Wubin Bai, Masahiro Irie, Zhonghe Liu, Haiwen Luan, Daniel Franklin, Khizar Nandoliya, Hexia Guo, Hao Zang, Yang Weng, Di Lu, Di Wu, Yixin Wu, Joseph Song, Mengdi Han, Enming Song, Yiyuan Yang, Xuexian Chen, Hangbo Zhao, Wei Lu, Giuditta Monti, Iwona Stepien, Irawati Kandela, Chad R Haney, Changsheng Wu, Sang Min Won, Hanjun Ryu, Alina Rwei, Haixu Shen, Jihye Kim, Hong-Joon Yoon, Wei Ouyang, Yihan Liu, Emily Suen, Huang-Yu Chen, Jerry Okina, Jushen Liang, Yonggang Huang, Guillermo A Ameer, Weidong Zhou, John A Rogers
{"title":"生物可吸收多层光子腔作为区域组织温度的无束缚测量的临时植入物。","authors":"Wubin Bai,&nbsp;Masahiro Irie,&nbsp;Zhonghe Liu,&nbsp;Haiwen Luan,&nbsp;Daniel Franklin,&nbsp;Khizar Nandoliya,&nbsp;Hexia Guo,&nbsp;Hao Zang,&nbsp;Yang Weng,&nbsp;Di Lu,&nbsp;Di Wu,&nbsp;Yixin Wu,&nbsp;Joseph Song,&nbsp;Mengdi Han,&nbsp;Enming Song,&nbsp;Yiyuan Yang,&nbsp;Xuexian Chen,&nbsp;Hangbo Zhao,&nbsp;Wei Lu,&nbsp;Giuditta Monti,&nbsp;Iwona Stepien,&nbsp;Irawati Kandela,&nbsp;Chad R Haney,&nbsp;Changsheng Wu,&nbsp;Sang Min Won,&nbsp;Hanjun Ryu,&nbsp;Alina Rwei,&nbsp;Haixu Shen,&nbsp;Jihye Kim,&nbsp;Hong-Joon Yoon,&nbsp;Wei Ouyang,&nbsp;Yihan Liu,&nbsp;Emily Suen,&nbsp;Huang-Yu Chen,&nbsp;Jerry Okina,&nbsp;Jushen Liang,&nbsp;Yonggang Huang,&nbsp;Guillermo A Ameer,&nbsp;Weidong Zhou,&nbsp;John A Rogers","doi":"10.34133/2021/8653218","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective and Impact Statement</i>. Real-time monitoring of the temperatures of regional tissue microenvironments can serve as the diagnostic basis for treating various health conditions and diseases. <i>Introduction</i>. Traditional thermal sensors allow measurements at surfaces or at near-surface regions of the skin or of certain body cavities. Evaluations at depth require implanted devices connected to external readout electronics via physical interfaces that lead to risks for infection and movement constraints for the patient. Also, surgical extraction procedures after a period of need can introduce additional risks and costs. <i>Methods</i>. Here, we report a wireless, bioresorbable class of temperature sensor that exploits multilayer photonic cavities, for continuous optical measurements of regional, deep-tissue microenvironments over a timeframe of interest followed by complete clearance via natural body processes. <i>Results</i>. The designs decouple the influence of detection angle from temperature on the reflection spectra, to enable high accuracy in sensing, as supported by in vitro experiments and optical simulations. Studies with devices implanted into subcutaneous tissues of both awake, freely moving and asleep animal models illustrate the applicability of this technology for in vivo measurements. <i>Conclusion</i>. The results demonstrate the use of bioresorbable materials in advanced photonic structures with unique capabilities in tracking of thermal signatures of tissue microenvironments, with potential relevance to human healthcare.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521677/pdf/","citationCount":"4","resultStr":"{\"title\":\"Bioresorbable Multilayer Photonic Cavities as Temporary Implants for Tether-Free Measurements of Regional Tissue Temperatures.\",\"authors\":\"Wubin Bai,&nbsp;Masahiro Irie,&nbsp;Zhonghe Liu,&nbsp;Haiwen Luan,&nbsp;Daniel Franklin,&nbsp;Khizar Nandoliya,&nbsp;Hexia Guo,&nbsp;Hao Zang,&nbsp;Yang Weng,&nbsp;Di Lu,&nbsp;Di Wu,&nbsp;Yixin Wu,&nbsp;Joseph Song,&nbsp;Mengdi Han,&nbsp;Enming Song,&nbsp;Yiyuan Yang,&nbsp;Xuexian Chen,&nbsp;Hangbo Zhao,&nbsp;Wei Lu,&nbsp;Giuditta Monti,&nbsp;Iwona Stepien,&nbsp;Irawati Kandela,&nbsp;Chad R Haney,&nbsp;Changsheng Wu,&nbsp;Sang Min Won,&nbsp;Hanjun Ryu,&nbsp;Alina Rwei,&nbsp;Haixu Shen,&nbsp;Jihye Kim,&nbsp;Hong-Joon Yoon,&nbsp;Wei Ouyang,&nbsp;Yihan Liu,&nbsp;Emily Suen,&nbsp;Huang-Yu Chen,&nbsp;Jerry Okina,&nbsp;Jushen Liang,&nbsp;Yonggang Huang,&nbsp;Guillermo A Ameer,&nbsp;Weidong Zhou,&nbsp;John A Rogers\",\"doi\":\"10.34133/2021/8653218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective and Impact Statement</i>. Real-time monitoring of the temperatures of regional tissue microenvironments can serve as the diagnostic basis for treating various health conditions and diseases. <i>Introduction</i>. Traditional thermal sensors allow measurements at surfaces or at near-surface regions of the skin or of certain body cavities. Evaluations at depth require implanted devices connected to external readout electronics via physical interfaces that lead to risks for infection and movement constraints for the patient. Also, surgical extraction procedures after a period of need can introduce additional risks and costs. <i>Methods</i>. Here, we report a wireless, bioresorbable class of temperature sensor that exploits multilayer photonic cavities, for continuous optical measurements of regional, deep-tissue microenvironments over a timeframe of interest followed by complete clearance via natural body processes. <i>Results</i>. The designs decouple the influence of detection angle from temperature on the reflection spectra, to enable high accuracy in sensing, as supported by in vitro experiments and optical simulations. Studies with devices implanted into subcutaneous tissues of both awake, freely moving and asleep animal models illustrate the applicability of this technology for in vivo measurements. <i>Conclusion</i>. The results demonstrate the use of bioresorbable materials in advanced photonic structures with unique capabilities in tracking of thermal signatures of tissue microenvironments, with potential relevance to human healthcare.</p>\",\"PeriodicalId\":72430,\"journal\":{\"name\":\"BME frontiers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2021-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521677/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BME frontiers\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.34133/2021/8653218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/2021/8653218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 4

摘要

目标和影响声明。对区域组织微环境温度的实时监测可以作为治疗各种健康状况和疾病的诊断基础。介绍传统的热传感器允许在皮肤或某些体腔的表面或近表面区域进行测量。深度评估需要通过物理接口连接到外部读出电子设备的植入设备,这会导致患者感染和运动受限的风险。此外,在需要一段时间后进行外科手术可能会带来额外的风险和成本。方法。在这里,我们报道了一种无线、生物可吸收的温度传感器,该传感器利用多层光子腔,在感兴趣的时间段内对区域、深层组织微环境进行连续的光学测量,然后通过自然身体过程完全清除。后果该设计将检测角度和温度对反射光谱的影响解耦,以实现高精度的传感,这得到了体外实验和光学模拟的支持。将设备植入清醒、自由活动和睡眠动物模型的皮下组织的研究表明了这项技术在体内测量中的适用性。结论研究结果表明,生物可吸收材料在先进的光子结构中的应用,在跟踪组织微环境的热特征方面具有独特的能力,与人类健康具有潜在的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bioresorbable Multilayer Photonic Cavities as Temporary Implants for Tether-Free Measurements of Regional Tissue Temperatures.

Bioresorbable Multilayer Photonic Cavities as Temporary Implants for Tether-Free Measurements of Regional Tissue Temperatures.

Bioresorbable Multilayer Photonic Cavities as Temporary Implants for Tether-Free Measurements of Regional Tissue Temperatures.

Bioresorbable Multilayer Photonic Cavities as Temporary Implants for Tether-Free Measurements of Regional Tissue Temperatures.

Objective and Impact Statement. Real-time monitoring of the temperatures of regional tissue microenvironments can serve as the diagnostic basis for treating various health conditions and diseases. Introduction. Traditional thermal sensors allow measurements at surfaces or at near-surface regions of the skin or of certain body cavities. Evaluations at depth require implanted devices connected to external readout electronics via physical interfaces that lead to risks for infection and movement constraints for the patient. Also, surgical extraction procedures after a period of need can introduce additional risks and costs. Methods. Here, we report a wireless, bioresorbable class of temperature sensor that exploits multilayer photonic cavities, for continuous optical measurements of regional, deep-tissue microenvironments over a timeframe of interest followed by complete clearance via natural body processes. Results. The designs decouple the influence of detection angle from temperature on the reflection spectra, to enable high accuracy in sensing, as supported by in vitro experiments and optical simulations. Studies with devices implanted into subcutaneous tissues of both awake, freely moving and asleep animal models illustrate the applicability of this technology for in vivo measurements. Conclusion. The results demonstrate the use of bioresorbable materials in advanced photonic structures with unique capabilities in tracking of thermal signatures of tissue microenvironments, with potential relevance to human healthcare.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信