通过可泛化深度学习在双光子显微镜下对脑血管的解剖建模。

IF 5 Q1 ENGINEERING, BIOMEDICAL
BME frontiers Pub Date : 2020-12-05 eCollection Date: 2020-01-01 DOI:10.34133/2020/8620932
Waleed Tahir, Sreekanth Kura, Jiabei Zhu, Xiaojun Cheng, Rafat Damseh, Fetsum Tadesse, Alex Seibel, Blaire S Lee, Frédéric Lesage, Sava Sakadžic, David A Boas, Lei Tian
{"title":"通过可泛化深度学习在双光子显微镜下对脑血管的解剖建模。","authors":"Waleed Tahir, Sreekanth Kura, Jiabei Zhu, Xiaojun Cheng, Rafat Damseh, Fetsum Tadesse, Alex Seibel, Blaire S Lee, Frédéric Lesage, Sava Sakadžic, David A Boas, Lei Tian","doi":"10.34133/2020/8620932","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective and Impact Statement</i>. Segmentation of blood vessels from two-photon microscopy (2PM) angiograms of brains has important applications in hemodynamic analysis and disease diagnosis. Here, we develop a generalizable deep learning technique for accurate 2PM vascular segmentation of sizable regions in mouse brains acquired from multiple 2PM setups. The technique is computationally efficient, thus ideal for large-scale neurovascular analysis. <i>Introduction</i>. Vascular segmentation from 2PM angiograms is an important first step in hemodynamic modeling of brain vasculature. Existing segmentation methods based on deep learning either lack the ability to generalize to data from different imaging systems or are computationally infeasible for large-scale angiograms. In this work, we overcome both these limitations by a method that is generalizable to various imaging systems and is able to segment large-scale angiograms. <i>Methods</i>. We employ a computationally efficient deep learning framework with a loss function that incorporates a balanced binary-cross-entropy loss and total variation regularization on the network's output. Its effectiveness is demonstrated on experimentally acquired in vivo angiograms from mouse brains of dimensions up to <math><mn>808</mn><mo>×</mo><mn>808</mn><mo>×</mo><mn>702</mn><mtext> </mtext><mi>μ</mi><mtext>m</mtext></math>. <i>Results</i>. To demonstrate the superior generalizability of our framework, we train on data from only one 2PM microscope and demonstrate high-quality segmentation on data from a different microscope without any network tuning. Overall, our method demonstrates 10× faster computation in terms of voxels-segmented-per-second and 3× larger depth compared to the state-of-the-art. <i>Conclusion</i>. Our work provides a generalizable and computationally efficient anatomical modeling framework for brain vasculature, which consists of deep learning-based vascular segmentation followed by graphing. It paves the way for future modeling and analysis of hemodynamic response at much greater scales that were inaccessible before.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2020 ","pages":"8620932"},"PeriodicalIF":5.0000,"publicationDate":"2020-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521669/pdf/","citationCount":"0","resultStr":"{\"title\":\"Anatomical Modeling of Brain Vasculature in Two-Photon Microscopy by Generalizable Deep Learning.\",\"authors\":\"Waleed Tahir, Sreekanth Kura, Jiabei Zhu, Xiaojun Cheng, Rafat Damseh, Fetsum Tadesse, Alex Seibel, Blaire S Lee, Frédéric Lesage, Sava Sakadžic, David A Boas, Lei Tian\",\"doi\":\"10.34133/2020/8620932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective and Impact Statement</i>. Segmentation of blood vessels from two-photon microscopy (2PM) angiograms of brains has important applications in hemodynamic analysis and disease diagnosis. Here, we develop a generalizable deep learning technique for accurate 2PM vascular segmentation of sizable regions in mouse brains acquired from multiple 2PM setups. The technique is computationally efficient, thus ideal for large-scale neurovascular analysis. <i>Introduction</i>. Vascular segmentation from 2PM angiograms is an important first step in hemodynamic modeling of brain vasculature. Existing segmentation methods based on deep learning either lack the ability to generalize to data from different imaging systems or are computationally infeasible for large-scale angiograms. In this work, we overcome both these limitations by a method that is generalizable to various imaging systems and is able to segment large-scale angiograms. <i>Methods</i>. We employ a computationally efficient deep learning framework with a loss function that incorporates a balanced binary-cross-entropy loss and total variation regularization on the network's output. Its effectiveness is demonstrated on experimentally acquired in vivo angiograms from mouse brains of dimensions up to <math><mn>808</mn><mo>×</mo><mn>808</mn><mo>×</mo><mn>702</mn><mtext> </mtext><mi>μ</mi><mtext>m</mtext></math>. <i>Results</i>. To demonstrate the superior generalizability of our framework, we train on data from only one 2PM microscope and demonstrate high-quality segmentation on data from a different microscope without any network tuning. Overall, our method demonstrates 10× faster computation in terms of voxels-segmented-per-second and 3× larger depth compared to the state-of-the-art. <i>Conclusion</i>. Our work provides a generalizable and computationally efficient anatomical modeling framework for brain vasculature, which consists of deep learning-based vascular segmentation followed by graphing. It paves the way for future modeling and analysis of hemodynamic response at much greater scales that were inaccessible before.</p>\",\"PeriodicalId\":72430,\"journal\":{\"name\":\"BME frontiers\",\"volume\":\"2020 \",\"pages\":\"8620932\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2020-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521669/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BME frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/2020/8620932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2020/8620932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目标和影响声明。从双光子显微镜(2PM)脑血管造影图像中分割血管在血流动力学分析和疾病诊断中具有重要应用。在这里,我们开发了一种可推广的深度学习技术,用于从多个2PM设置中获得的小鼠大脑中相当大区域的精确2PM血管分割。该技术计算效率高,因此是大规模神经血管分析的理想选择。介绍从2PM血管造影照片中分割血管是脑血管系统血液动力学建模的重要第一步。现有的基于深度学习的分割方法要么缺乏推广到来自不同成像系统的数据的能力,要么在计算上不适用于大规模血管造影。在这项工作中,我们通过一种可推广到各种成像系统并能够分割大规模血管造影照片的方法克服了这两个限制。方法。我们采用了一种计算高效的深度学习框架,该框架具有损失函数,该函数在网络输出上结合了平衡的二进制交叉熵损失和全变差正则化。其有效性在808×808×702小鼠大脑的实验性体内血管造影照片上得到了证明 μm。后果为了证明我们框架的优越可推广性,我们只对来自一个2PM显微镜的数据进行训练,并在没有任何网络调整的情况下对来自不同显微镜的数据演示高质量分割。总体而言,与最先进的方法相比,我们的方法在每秒分割体素方面的计算速度快了10倍,深度大了3倍。结论我们的工作为脑血管系统提供了一个可推广且计算高效的解剖建模框架,该框架包括基于深度学习的血管分割和绘图。它为未来在更大范围内对血液动力学反应进行建模和分析铺平了道路,而这在以前是无法实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anatomical Modeling of Brain Vasculature in Two-Photon Microscopy by Generalizable Deep Learning.

Anatomical Modeling of Brain Vasculature in Two-Photon Microscopy by Generalizable Deep Learning.

Anatomical Modeling of Brain Vasculature in Two-Photon Microscopy by Generalizable Deep Learning.

Anatomical Modeling of Brain Vasculature in Two-Photon Microscopy by Generalizable Deep Learning.

Objective and Impact Statement. Segmentation of blood vessels from two-photon microscopy (2PM) angiograms of brains has important applications in hemodynamic analysis and disease diagnosis. Here, we develop a generalizable deep learning technique for accurate 2PM vascular segmentation of sizable regions in mouse brains acquired from multiple 2PM setups. The technique is computationally efficient, thus ideal for large-scale neurovascular analysis. Introduction. Vascular segmentation from 2PM angiograms is an important first step in hemodynamic modeling of brain vasculature. Existing segmentation methods based on deep learning either lack the ability to generalize to data from different imaging systems or are computationally infeasible for large-scale angiograms. In this work, we overcome both these limitations by a method that is generalizable to various imaging systems and is able to segment large-scale angiograms. Methods. We employ a computationally efficient deep learning framework with a loss function that incorporates a balanced binary-cross-entropy loss and total variation regularization on the network's output. Its effectiveness is demonstrated on experimentally acquired in vivo angiograms from mouse brains of dimensions up to 808×808×702μm. Results. To demonstrate the superior generalizability of our framework, we train on data from only one 2PM microscope and demonstrate high-quality segmentation on data from a different microscope without any network tuning. Overall, our method demonstrates 10× faster computation in terms of voxels-segmented-per-second and 3× larger depth compared to the state-of-the-art. Conclusion. Our work provides a generalizable and computationally efficient anatomical modeling framework for brain vasculature, which consists of deep learning-based vascular segmentation followed by graphing. It paves the way for future modeling and analysis of hemodynamic response at much greater scales that were inaccessible before.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信