Zhen Zhang, Changyue Jiang, Cui Chen, Kai Su, Hong Lin, Yuhui Zhao, Yinshan Guo
{"title":"VvWRKY5通过促进茉莉酸途径增强葡萄对白腐病的抗性。","authors":"Zhen Zhang, Changyue Jiang, Cui Chen, Kai Su, Hong Lin, Yuhui Zhao, Yinshan Guo","doi":"10.1093/hr/uhad172","DOIUrl":null,"url":null,"abstract":"<p><p>Grape white rot is a disease caused by <i>Coniella diplodiella</i> (Speg.) Sacc. (<i>Cd</i>) can drastically reduce the production and quality of grape (<i>Vitis vinifera</i>). WRKY transcription factors play a vital role in the regulation of plant resistance to pathogens, but their functions in grape white rot need to be further explored. Here, we found that the expression of the WRKY IIe subfamily member <i>VvWRKY5</i> was highly induced by <i>Cd</i> infection and jasmonic acid (JA) treatment. Transient injection and stable overexpression (in grape calli and <i>Arabidopsis</i>) demonstrated that VvWRKY5 positively regulated grape resistance to white rot. We also determined that VvWRKY5 regulated the JA response by directly binding to the promoters of <i>VvJAZ2</i> (a JA signaling suppressor) and <i>VvMYC2</i> (a JA signaling activator), thereby inhibiting and activating the transcription of <i>VvJAZ2</i> and <i>VvMYC2</i>, respectively. Furthermore, the interaction between VvJAZ2 and VvWRKY5 enhanced the suppression and promotion of <i>VvJAZ2</i> and <i>VvMYC2</i> activities by VvWRKY5, respectively. When <i>VvWRKY5</i> was overexpressed in grape, JA content was also increased. Overall, our results suggested that VvWRKY5 played a key role in regulating JA biosynthesis and signal transduction as well as enhancing white rot resistance in grape. Our results also provide theoretical guidance for the development of elite grape cultivars with enhanced pathogen resistance.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 10","pages":"uhad172"},"PeriodicalIF":7.6000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569242/pdf/","citationCount":"0","resultStr":"{\"title\":\"VvWRKY5 enhances white rot resistance in grape by promoting the jasmonic acid pathway.\",\"authors\":\"Zhen Zhang, Changyue Jiang, Cui Chen, Kai Su, Hong Lin, Yuhui Zhao, Yinshan Guo\",\"doi\":\"10.1093/hr/uhad172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Grape white rot is a disease caused by <i>Coniella diplodiella</i> (Speg.) Sacc. (<i>Cd</i>) can drastically reduce the production and quality of grape (<i>Vitis vinifera</i>). WRKY transcription factors play a vital role in the regulation of plant resistance to pathogens, but their functions in grape white rot need to be further explored. Here, we found that the expression of the WRKY IIe subfamily member <i>VvWRKY5</i> was highly induced by <i>Cd</i> infection and jasmonic acid (JA) treatment. Transient injection and stable overexpression (in grape calli and <i>Arabidopsis</i>) demonstrated that VvWRKY5 positively regulated grape resistance to white rot. We also determined that VvWRKY5 regulated the JA response by directly binding to the promoters of <i>VvJAZ2</i> (a JA signaling suppressor) and <i>VvMYC2</i> (a JA signaling activator), thereby inhibiting and activating the transcription of <i>VvJAZ2</i> and <i>VvMYC2</i>, respectively. Furthermore, the interaction between VvJAZ2 and VvWRKY5 enhanced the suppression and promotion of <i>VvJAZ2</i> and <i>VvMYC2</i> activities by VvWRKY5, respectively. When <i>VvWRKY5</i> was overexpressed in grape, JA content was also increased. Overall, our results suggested that VvWRKY5 played a key role in regulating JA biosynthesis and signal transduction as well as enhancing white rot resistance in grape. Our results also provide theoretical guidance for the development of elite grape cultivars with enhanced pathogen resistance.</p>\",\"PeriodicalId\":57479,\"journal\":{\"name\":\"园艺研究(英文)\",\"volume\":\"10 10\",\"pages\":\"uhad172\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569242/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"园艺研究(英文)\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhad172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"园艺研究(英文)","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.1093/hr/uhad172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
VvWRKY5 enhances white rot resistance in grape by promoting the jasmonic acid pathway.
Grape white rot is a disease caused by Coniella diplodiella (Speg.) Sacc. (Cd) can drastically reduce the production and quality of grape (Vitis vinifera). WRKY transcription factors play a vital role in the regulation of plant resistance to pathogens, but their functions in grape white rot need to be further explored. Here, we found that the expression of the WRKY IIe subfamily member VvWRKY5 was highly induced by Cd infection and jasmonic acid (JA) treatment. Transient injection and stable overexpression (in grape calli and Arabidopsis) demonstrated that VvWRKY5 positively regulated grape resistance to white rot. We also determined that VvWRKY5 regulated the JA response by directly binding to the promoters of VvJAZ2 (a JA signaling suppressor) and VvMYC2 (a JA signaling activator), thereby inhibiting and activating the transcription of VvJAZ2 and VvMYC2, respectively. Furthermore, the interaction between VvJAZ2 and VvWRKY5 enhanced the suppression and promotion of VvJAZ2 and VvMYC2 activities by VvWRKY5, respectively. When VvWRKY5 was overexpressed in grape, JA content was also increased. Overall, our results suggested that VvWRKY5 played a key role in regulating JA biosynthesis and signal transduction as well as enhancing white rot resistance in grape. Our results also provide theoretical guidance for the development of elite grape cultivars with enhanced pathogen resistance.