通过顺序处理将观察生物医学研究自动拆分为批次。

IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bram Burger, Marc Vaudel, Harald Barsnes
{"title":"通过顺序处理将观察生物医学研究自动拆分为批次。","authors":"Bram Burger,&nbsp;Marc Vaudel,&nbsp;Harald Barsnes","doi":"10.1093/biostatistics/kxac014","DOIUrl":null,"url":null,"abstract":"<p><p>Experimental design usually focuses on the setting where treatments and/or other aspects of interest can be manipulated. However, in observational biomedical studies with sequential processing, the set of available samples is often fixed, and the problem is thus rather the ordering and allocation of samples to batches such that comparisons between different treatments can be made with similar precision. In certain situations, this allocation can be done by hand, but this rapidly becomes impractical with more challenging cohort setups. Here, we present a fast and intuitive algorithm to generate balanced allocations of samples to batches for any single-variable model where the treatment variable is nominal. This greatly simplifies the grouping of samples into batches, makes the process reproducible, and provides a marked improvement over completely random allocations. The general challenges of allocation and why good solutions can be hard to find are also discussed, as well as potential extensions to multivariable settings.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583723/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated splitting into batches for observational biomedical studies with sequential processing.\",\"authors\":\"Bram Burger,&nbsp;Marc Vaudel,&nbsp;Harald Barsnes\",\"doi\":\"10.1093/biostatistics/kxac014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Experimental design usually focuses on the setting where treatments and/or other aspects of interest can be manipulated. However, in observational biomedical studies with sequential processing, the set of available samples is often fixed, and the problem is thus rather the ordering and allocation of samples to batches such that comparisons between different treatments can be made with similar precision. In certain situations, this allocation can be done by hand, but this rapidly becomes impractical with more challenging cohort setups. Here, we present a fast and intuitive algorithm to generate balanced allocations of samples to batches for any single-variable model where the treatment variable is nominal. This greatly simplifies the grouping of samples into batches, makes the process reproducible, and provides a marked improvement over completely random allocations. The general challenges of allocation and why good solutions can be hard to find are also discussed, as well as potential extensions to multivariable settings.</p>\",\"PeriodicalId\":55357,\"journal\":{\"name\":\"Biostatistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583723/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxac014\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxac014","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

实验设计通常侧重于可以操纵治疗和/或感兴趣的其他方面的环境。然而,在具有顺序处理的观察性生物医学研究中,可用样本的集合通常是固定的,因此问题是将样本排序和分配到批次,以便可以以类似的精度进行不同治疗之间的比较。在某些情况下,这种分配可以手动完成,但在更具挑战性的队列设置中,这很快变得不切实际。在这里,我们提出了一种快速直观的算法,用于为治疗变量为标称的任何单变量模型生成样本到批次的平衡分配。这大大简化了将样本分组为批次,使过程可重复,并比完全随机分配有了显著的改进。还讨论了分配的一般挑战以及为什么很难找到好的解决方案,以及对多变量设置的潜在扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automated splitting into batches for observational biomedical studies with sequential processing.

Automated splitting into batches for observational biomedical studies with sequential processing.

Automated splitting into batches for observational biomedical studies with sequential processing.

Automated splitting into batches for observational biomedical studies with sequential processing.

Experimental design usually focuses on the setting where treatments and/or other aspects of interest can be manipulated. However, in observational biomedical studies with sequential processing, the set of available samples is often fixed, and the problem is thus rather the ordering and allocation of samples to batches such that comparisons between different treatments can be made with similar precision. In certain situations, this allocation can be done by hand, but this rapidly becomes impractical with more challenging cohort setups. Here, we present a fast and intuitive algorithm to generate balanced allocations of samples to batches for any single-variable model where the treatment variable is nominal. This greatly simplifies the grouping of samples into batches, makes the process reproducible, and provides a marked improvement over completely random allocations. The general challenges of allocation and why good solutions can be hard to find are also discussed, as well as potential extensions to multivariable settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信