减少微波成像系统中的非穿透体能量传递。

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Peter Serano;Johnathan W. Adams;Louis Chen;Ara Nazarian;Reinhold Ludwig;Sergey Makaroff
{"title":"减少微波成像系统中的非穿透体能量传递。","authors":"Peter Serano;Johnathan W. Adams;Louis Chen;Ara Nazarian;Reinhold Ludwig;Sergey Makaroff","doi":"10.1109/JERM.2023.3247904","DOIUrl":null,"url":null,"abstract":"On-body antennas for use in microwave imaging (MI) systems can direct energy around the body instead of through the body, thus degrading the overall signal-to-noise ratio (SNR) of the system. This work introduces and quantifies the usage of modern metal-backed RF absorbing foam in conjunction with on-body antennas to dampen energy flowing around the body, using both simulations and experiments. A head imaging system is demonstrated herein but the principle can be applied to any part of the body including the torso or extremities. A computational model was simulated numerically using Ansys HFSS. A physical prototype in the form of a helmet with embedded antennas was built to compare simulations with measured data. Simulations and measurements demonstrate that usage of such metal-backed RF-absorbing foams can significantly reduce around-body coupling from Transmit (Tx) and Receive (Rx) antennas by approximately 10 dB. Thus, the overall SNR of the MI system can be substantially improved using this low-cost and affordable method.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"7 2","pages":"187-192"},"PeriodicalIF":3.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10061855","citationCount":"0","resultStr":"{\"title\":\"Reducing Non-Through Body Energy Transfer in Microwave Imaging Systems\",\"authors\":\"Peter Serano;Johnathan W. Adams;Louis Chen;Ara Nazarian;Reinhold Ludwig;Sergey Makaroff\",\"doi\":\"10.1109/JERM.2023.3247904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-body antennas for use in microwave imaging (MI) systems can direct energy around the body instead of through the body, thus degrading the overall signal-to-noise ratio (SNR) of the system. This work introduces and quantifies the usage of modern metal-backed RF absorbing foam in conjunction with on-body antennas to dampen energy flowing around the body, using both simulations and experiments. A head imaging system is demonstrated herein but the principle can be applied to any part of the body including the torso or extremities. A computational model was simulated numerically using Ansys HFSS. A physical prototype in the form of a helmet with embedded antennas was built to compare simulations with measured data. Simulations and measurements demonstrate that usage of such metal-backed RF-absorbing foams can significantly reduce around-body coupling from Transmit (Tx) and Receive (Rx) antennas by approximately 10 dB. Thus, the overall SNR of the MI system can be substantially improved using this low-cost and affordable method.\",\"PeriodicalId\":29955,\"journal\":{\"name\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"volume\":\"7 2\",\"pages\":\"187-192\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10061855\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10061855/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10061855/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

用于微波成像(MI)系统的体上天线可以将能量引导到身体周围而不是通过身体,从而降低系统的整体信噪比(SNR)。这项工作通过模拟和实验,介绍并量化了现代金属背衬射频吸收泡沫与体内天线的结合使用,以抑制身体周围的能量流动。本文演示了头部成像系统,但该原理可应用于身体的任何部位,包括躯干或四肢。使用Ansys HFSS对计算模型进行了数值模拟。建立了一个带有嵌入式天线的头盔形式的物理原型,以将模拟与测量数据进行比较。模拟和测量表明,使用这种金属背衬的RF吸收泡沫可以将来自发射(Tx)和接收(Rx)天线的绕体耦合显著减少约10dB。因此,使用这种低成本和可负担的方法,MI系统的总体SNR可以显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing Non-Through Body Energy Transfer in Microwave Imaging Systems
On-body antennas for use in microwave imaging (MI) systems can direct energy around the body instead of through the body, thus degrading the overall signal-to-noise ratio (SNR) of the system. This work introduces and quantifies the usage of modern metal-backed RF absorbing foam in conjunction with on-body antennas to dampen energy flowing around the body, using both simulations and experiments. A head imaging system is demonstrated herein but the principle can be applied to any part of the body including the torso or extremities. A computational model was simulated numerically using Ansys HFSS. A physical prototype in the form of a helmet with embedded antennas was built to compare simulations with measured data. Simulations and measurements demonstrate that usage of such metal-backed RF-absorbing foams can significantly reduce around-body coupling from Transmit (Tx) and Receive (Rx) antennas by approximately 10 dB. Thus, the overall SNR of the MI system can be substantially improved using this low-cost and affordable method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信