Jaqueline Isoppo da Cunha , Alessandra Maria Duarte Barauna , Ricardo Castilho Garcez
{"title":"索前结构在颚骨骨早期小梁发育中起协同作用","authors":"Jaqueline Isoppo da Cunha , Alessandra Maria Duarte Barauna , Ricardo Castilho Garcez","doi":"10.1016/j.cdev.2023.203879","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The vertebrate skull is formed by mesoderm<span><span> and neural crest<span> (NC) cells. The mesoderm contributes to the skull chordal domain, with the notochord playing an essential role in this process. The NC contributes to the skull prechordal domain, prompting investigation into the embryonic structures involved in prechordal neurocranium cartilage formation. The trabeculae cartilage, a structure of the prechordal neurocranium, arises at the convergence of </span></span>prechordal plate (PCP), ventral midline (VM) cells of the </span></span>diencephalon<span>, and dorsal oral ectoderm. This study examines the molecular participation of these embryonic structures in gnathostome trabeculae development. PCP-secreted SHH induces its expression in VM cells of the diencephalon, initiating a positive feedback loop involving </span></span><span><em>SIX3</em></span> and <span><em>GLI1</em></span>. SHH secreted by the VM cells of the diencephalon acts on the dorsal oral ectoderm, stimulating condensation of NC cells to form trabeculae. SHH from the prechordal region affects the expression of <span><em>SOX9</em></span><span> in NC cells. BMP7 and SHH secreted by PCP induce </span><em>NKX2.1</em><span> expression in VM cells of the diencephalon, but this does not impact trabeculae formation. Molecular cooperation between PCP, VM cells of the diencephalon, and dorsal oral ectoderm is crucial for craniofacial development by NC cells in the prechordal domain.</span></p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"176 ","pages":"Article 203879"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prechordal structures act cooperatively in early trabeculae development of gnathostome skull\",\"authors\":\"Jaqueline Isoppo da Cunha , Alessandra Maria Duarte Barauna , Ricardo Castilho Garcez\",\"doi\":\"10.1016/j.cdev.2023.203879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The vertebrate skull is formed by mesoderm<span><span> and neural crest<span> (NC) cells. The mesoderm contributes to the skull chordal domain, with the notochord playing an essential role in this process. The NC contributes to the skull prechordal domain, prompting investigation into the embryonic structures involved in prechordal neurocranium cartilage formation. The trabeculae cartilage, a structure of the prechordal neurocranium, arises at the convergence of </span></span>prechordal plate (PCP), ventral midline (VM) cells of the </span></span>diencephalon<span>, and dorsal oral ectoderm. This study examines the molecular participation of these embryonic structures in gnathostome trabeculae development. PCP-secreted SHH induces its expression in VM cells of the diencephalon, initiating a positive feedback loop involving </span></span><span><em>SIX3</em></span> and <span><em>GLI1</em></span>. SHH secreted by the VM cells of the diencephalon acts on the dorsal oral ectoderm, stimulating condensation of NC cells to form trabeculae. SHH from the prechordal region affects the expression of <span><em>SOX9</em></span><span> in NC cells. BMP7 and SHH secreted by PCP induce </span><em>NKX2.1</em><span> expression in VM cells of the diencephalon, but this does not impact trabeculae formation. Molecular cooperation between PCP, VM cells of the diencephalon, and dorsal oral ectoderm is crucial for craniofacial development by NC cells in the prechordal domain.</span></p></div>\",\"PeriodicalId\":36123,\"journal\":{\"name\":\"Cells and Development\",\"volume\":\"176 \",\"pages\":\"Article 203879\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667290123000554\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells and Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667290123000554","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Prechordal structures act cooperatively in early trabeculae development of gnathostome skull
The vertebrate skull is formed by mesoderm and neural crest (NC) cells. The mesoderm contributes to the skull chordal domain, with the notochord playing an essential role in this process. The NC contributes to the skull prechordal domain, prompting investigation into the embryonic structures involved in prechordal neurocranium cartilage formation. The trabeculae cartilage, a structure of the prechordal neurocranium, arises at the convergence of prechordal plate (PCP), ventral midline (VM) cells of the diencephalon, and dorsal oral ectoderm. This study examines the molecular participation of these embryonic structures in gnathostome trabeculae development. PCP-secreted SHH induces its expression in VM cells of the diencephalon, initiating a positive feedback loop involving SIX3 and GLI1. SHH secreted by the VM cells of the diencephalon acts on the dorsal oral ectoderm, stimulating condensation of NC cells to form trabeculae. SHH from the prechordal region affects the expression of SOX9 in NC cells. BMP7 and SHH secreted by PCP induce NKX2.1 expression in VM cells of the diencephalon, but this does not impact trabeculae formation. Molecular cooperation between PCP, VM cells of the diencephalon, and dorsal oral ectoderm is crucial for craniofacial development by NC cells in the prechordal domain.