利用深度学习识别复杂样本中的植物寄生线虫。

IF 1.4 4区 生物学 Q2 ZOOLOGY
Journal of nematology Pub Date : 2023-10-16 eCollection Date: 2023-02-01 DOI:10.2478/jofnem-2023-0045
Sahil Agarwal, Zachary C Curran, Guohao Yu, Shova Mishra, Anil Baniya, Mesfin Bogale, Kody Hughes, Oscar Salichs, Alina Zare, Zhe Jiang, Peter DiGennaro
{"title":"利用深度学习识别复杂样本中的植物寄生线虫。","authors":"Sahil Agarwal, Zachary C Curran, Guohao Yu, Shova Mishra, Anil Baniya, Mesfin Bogale, Kody Hughes, Oscar Salichs, Alina Zare, Zhe Jiang, Peter DiGennaro","doi":"10.2478/jofnem-2023-0045","DOIUrl":null,"url":null,"abstract":"<p><p>Plant parasitic nematodes are significant contributors to yield loss worldwide, causing devastating losses to every crop species, in every climate. Mitigating these losses requires swift and informed management strategies, centered on identification and quantification of field populations. Current plant parasitic nematode identification methods rely heavily on manual analyses of microscope images by a highly trained nematologist. This mode is not only expensive and time consuming, but often excludes the possibility of widely sharing and disseminating results to inform regional trends and potential emergent issues. This work presents a new public dataset containing annotated images of plant parasitic nematodes from heterologous soil extractions. This dataset serves to propagate new automated methodologies or speedier plant parasitic nematode identification using multiple deep learning object detection models and offers a path towards widely shared tools, results, and meta-analyses.</p>","PeriodicalId":16475,"journal":{"name":"Journal of nematology","volume":"55 1","pages":"20230045"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578830/pdf/","citationCount":"0","resultStr":"{\"title\":\"Plant Parasitic Nematode Identification in Complex Samples with Deep Learning.\",\"authors\":\"Sahil Agarwal, Zachary C Curran, Guohao Yu, Shova Mishra, Anil Baniya, Mesfin Bogale, Kody Hughes, Oscar Salichs, Alina Zare, Zhe Jiang, Peter DiGennaro\",\"doi\":\"10.2478/jofnem-2023-0045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant parasitic nematodes are significant contributors to yield loss worldwide, causing devastating losses to every crop species, in every climate. Mitigating these losses requires swift and informed management strategies, centered on identification and quantification of field populations. Current plant parasitic nematode identification methods rely heavily on manual analyses of microscope images by a highly trained nematologist. This mode is not only expensive and time consuming, but often excludes the possibility of widely sharing and disseminating results to inform regional trends and potential emergent issues. This work presents a new public dataset containing annotated images of plant parasitic nematodes from heterologous soil extractions. This dataset serves to propagate new automated methodologies or speedier plant parasitic nematode identification using multiple deep learning object detection models and offers a path towards widely shared tools, results, and meta-analyses.</p>\",\"PeriodicalId\":16475,\"journal\":{\"name\":\"Journal of nematology\",\"volume\":\"55 1\",\"pages\":\"20230045\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578830/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nematology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2478/jofnem-2023-0045\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nematology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2478/jofnem-2023-0045","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

植物寄生线虫是全球产量损失的重要原因,在各种气候下对每一种作物造成毁灭性损失。减轻这些损失需要迅速和知情的管理策略,以确定和量化野外种群为中心。目前的植物寄生线虫鉴定方法在很大程度上依赖于训练有素的线虫学家对显微镜图像的手动分析。这种模式不仅成本高、耗时长,而且往往排除了广泛分享和传播成果以告知区域趋势和潜在紧急问题的可能性。这项工作提供了一个新的公共数据集,其中包含来自异源土壤提取物的植物寄生线虫的注释图像。该数据集用于传播新的自动化方法或使用多个深度学习对象检测模型更快地识别植物寄生线虫,并为实现广泛共享的工具、结果和荟萃分析提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plant Parasitic Nematode Identification in Complex Samples with Deep Learning.

Plant parasitic nematodes are significant contributors to yield loss worldwide, causing devastating losses to every crop species, in every climate. Mitigating these losses requires swift and informed management strategies, centered on identification and quantification of field populations. Current plant parasitic nematode identification methods rely heavily on manual analyses of microscope images by a highly trained nematologist. This mode is not only expensive and time consuming, but often excludes the possibility of widely sharing and disseminating results to inform regional trends and potential emergent issues. This work presents a new public dataset containing annotated images of plant parasitic nematodes from heterologous soil extractions. This dataset serves to propagate new automated methodologies or speedier plant parasitic nematode identification using multiple deep learning object detection models and offers a path towards widely shared tools, results, and meta-analyses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of nematology
Journal of nematology 生物-动物学
CiteScore
2.90
自引率
7.70%
发文量
40
审稿时长
14 weeks
期刊介绍: Journal of Nematology is the official technical and scientific communication publication of the Society of Nematologists since 1969. The journal publishes original papers on all aspects of basic, applied, descriptive, theoretical or experimental nematology and adheres to strict peer-review policy. Other categories of papers include invited reviews, research notes, abstracts of papers presented at annual meetings, and special publications as appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信