疏水性聚(2-恶唑啉)的水解及其随后通过aza-Michael加成的改性。

IF 1.8 4区 化学 Q3 POLYMER SCIENCE
Designed Monomers and Polymers Pub Date : 2023-10-11 eCollection Date: 2023-01-01 DOI:10.1080/15685551.2023.2267232
Ben A Drain, Remzi C Becer
{"title":"疏水性聚(2-恶唑啉)的水解及其随后通过aza-Michael加成的改性。","authors":"Ben A Drain,&nbsp;Remzi C Becer","doi":"10.1080/15685551.2023.2267232","DOIUrl":null,"url":null,"abstract":"<p><p>Partially hydrolysed poly(2-oxazoline)s possess unique properties. However, much of the focus in this area has been on water soluble poly(2-oxazoline)s. Where hydrophobic poly(2-oxazoline)s have been used, this is often for selective hydrolysis. However, hydrolysis of very hydrophobic polymers could lead to interesting solution behaviour. Herein, we describe universal conditions for the hydrolysis of poly(2-alkyl-2-oxazoline)s suitable for both hydrophobic and hydrophilic 2-oxazolines. We show that the system utilised gives comparable rates to that of water alone for poly(2-ethyl-2-oxazoline). In addition, poly(2-fatty acid-2-oxazoline) was hydrolysed using the developed system and was found to proceed in a controlled manner allowing the targeting of specific degrees of hydrolysis, albeit much slower than for poly(2-ethyl-2-oxazoline). Finally, we demonstrate the partial functionalisation of poly(2-oxazoline)-poly(ethylene imine) co-polymers <i>via</i> aza-Michael addition.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5c/71/TDMP_26_2267232.PMC10569348.pdf","citationCount":"0","resultStr":"{\"title\":\"Hydrolysis of hydrophobic poly(2-oxazoline)s and their subsequent modification <i>via</i> aza-Michael addition.\",\"authors\":\"Ben A Drain,&nbsp;Remzi C Becer\",\"doi\":\"10.1080/15685551.2023.2267232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Partially hydrolysed poly(2-oxazoline)s possess unique properties. However, much of the focus in this area has been on water soluble poly(2-oxazoline)s. Where hydrophobic poly(2-oxazoline)s have been used, this is often for selective hydrolysis. However, hydrolysis of very hydrophobic polymers could lead to interesting solution behaviour. Herein, we describe universal conditions for the hydrolysis of poly(2-alkyl-2-oxazoline)s suitable for both hydrophobic and hydrophilic 2-oxazolines. We show that the system utilised gives comparable rates to that of water alone for poly(2-ethyl-2-oxazoline). In addition, poly(2-fatty acid-2-oxazoline) was hydrolysed using the developed system and was found to proceed in a controlled manner allowing the targeting of specific degrees of hydrolysis, albeit much slower than for poly(2-ethyl-2-oxazoline). Finally, we demonstrate the partial functionalisation of poly(2-oxazoline)-poly(ethylene imine) co-polymers <i>via</i> aza-Michael addition.</p>\",\"PeriodicalId\":11170,\"journal\":{\"name\":\"Designed Monomers and Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5c/71/TDMP_26_2267232.PMC10569348.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designed Monomers and Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15685551.2023.2267232\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2023.2267232","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

部分水解的聚(2-恶唑啉)具有独特的性质。然而,该领域的大部分焦点都集中在水溶性聚(2-恶唑啉)上。在使用疏水性聚(2-恶唑啉)的情况下,这通常用于选择性水解。然而,非常疏水的聚合物的水解可能会导致有趣的溶液行为。在此,我们描述了适用于疏水性和亲水性2-恶唑啉的聚(2-烷基-2-恶唑啉)的水解的通用条件。我们表明,所使用的系统对聚(2-乙基-2-恶唑啉)的产率与单独的水的产率相当。此外,使用所开发的系统水解聚(2-脂肪酸-2-恶唑啉),并发现其以可控的方式进行,允许特定水解度的靶向,尽管比聚(2-乙基-2-恶唑烷)慢得多。最后,我们证明了聚(2-恶唑啉)-聚(乙烯亚胺)共聚物通过aza-Michael加成的部分官能化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrolysis of hydrophobic poly(2-oxazoline)s and their subsequent modification <i>via</i> aza-Michael addition.

Hydrolysis of hydrophobic poly(2-oxazoline)s and their subsequent modification <i>via</i> aza-Michael addition.

Hydrolysis of hydrophobic poly(2-oxazoline)s and their subsequent modification <i>via</i> aza-Michael addition.

Hydrolysis of hydrophobic poly(2-oxazoline)s and their subsequent modification via aza-Michael addition.

Partially hydrolysed poly(2-oxazoline)s possess unique properties. However, much of the focus in this area has been on water soluble poly(2-oxazoline)s. Where hydrophobic poly(2-oxazoline)s have been used, this is often for selective hydrolysis. However, hydrolysis of very hydrophobic polymers could lead to interesting solution behaviour. Herein, we describe universal conditions for the hydrolysis of poly(2-alkyl-2-oxazoline)s suitable for both hydrophobic and hydrophilic 2-oxazolines. We show that the system utilised gives comparable rates to that of water alone for poly(2-ethyl-2-oxazoline). In addition, poly(2-fatty acid-2-oxazoline) was hydrolysed using the developed system and was found to proceed in a controlled manner allowing the targeting of specific degrees of hydrolysis, albeit much slower than for poly(2-ethyl-2-oxazoline). Finally, we demonstrate the partial functionalisation of poly(2-oxazoline)-poly(ethylene imine) co-polymers via aza-Michael addition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designed Monomers and Polymers
Designed Monomers and Polymers 化学-高分子科学
CiteScore
3.30
自引率
0.00%
发文量
28
审稿时长
2.1 months
期刊介绍: Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work. The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications. DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to: -macromolecular science, initiators, macroinitiators for macromolecular design -kinetics, mechanism and modelling aspects of polymerization -new methods of synthesis of known monomers -new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization) -functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers -new polymeric materials with biomedical applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信