Letícia Oba Sakae, Taiana Paola Prado, Sávio José Cardoso Bezerra, Samira Helena Niemeyer, Alessandra Buhler Borges, Thiago Saads Carvalho, Tais Scaramucci
{"title":"用于抑制羟基磷灰石溶解的成膜聚合物:筛选研究。","authors":"Letícia Oba Sakae, Taiana Paola Prado, Sávio José Cardoso Bezerra, Samira Helena Niemeyer, Alessandra Buhler Borges, Thiago Saads Carvalho, Tais Scaramucci","doi":"10.1159/000533546","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to evaluate the effect of film-forming polymer solutions of different concentrations and pH values, either associated or not with sodium fluoride (F; 225 ppm F-), when applied during the initial stage of salivary pellicle formation, to prevent the dissolution of hydroxyapatite (HA), which was determined by the pH-stat method. Polyacrylic acid (PA), chitosan, sodium linear polyphosphate (LPP), polyvinyl methyl ether/maleic anhydride (PVM/MA), and propylene glycol alginate (PGA) were tested in three concentrations (lower, medium, and higher), two pH values (native or adjusted), and either associated or not with F. Distilled water, F, and stannous ion+fluoride (Sn/F; 225 ppm F- and 800 ppm Sn2+, as SnCl2) solutions were the controls, totalizing 63 groups. HA crystals were pretreated with human saliva for 1 min to allow pellicle formation, then immersed in the experimental solutions (1 min), and exposed to saliva for another 28 min. Subsequently, they were added to a 0.3% citric acid solution (pH = 3.8), connected to a pH-stat system that added aliquots of 28 μL 0.1 N HCl for a total reaction time of 5 min. Data were analyzed with one-way ANOVA and Tukey's tests (α = 0.05). For PA alone, the concentrations of 0.1% (native pH), 0.06%, and 0.08% (both pH adjusted) showed significantly lower HA dissolution than the negative control. PA concentrations of 0.1% and 0.08%, of both pH values, improved the effect of F against HA dissolution to a near-identical value as Sn/F. All solutions containing chitosan and LPP significantly reduced HA dissolution in comparison with the control. For chitosan, the concentration of 0.5% (in both pH values) improved the effect of F. LPP at 0.5% (native pH) and all associations of LPP with F outperformed the effect of F. Some PVM/MA solutions significantly reduced HA dissolution but PVM/MA could not improve the protection of F. PGA was incapable of reducing HA dissolution or improving F effect. It was concluded that chitosan, LPP, and some PA and PVM/MA solutions used alone were capable of reducing HA dissolution. Only PA, chitosan, and LPP were able to enhance fluoride protection, but for PA and chitosan, this was influenced by the polymer concentration.</p>","PeriodicalId":9620,"journal":{"name":"Caries Research","volume":" ","pages":"602-612"},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Film-Forming Polymers for Inhibition of Hydroxyapatite Dissolution: A Screening Study.\",\"authors\":\"Letícia Oba Sakae, Taiana Paola Prado, Sávio José Cardoso Bezerra, Samira Helena Niemeyer, Alessandra Buhler Borges, Thiago Saads Carvalho, Tais Scaramucci\",\"doi\":\"10.1159/000533546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study was to evaluate the effect of film-forming polymer solutions of different concentrations and pH values, either associated or not with sodium fluoride (F; 225 ppm F-), when applied during the initial stage of salivary pellicle formation, to prevent the dissolution of hydroxyapatite (HA), which was determined by the pH-stat method. Polyacrylic acid (PA), chitosan, sodium linear polyphosphate (LPP), polyvinyl methyl ether/maleic anhydride (PVM/MA), and propylene glycol alginate (PGA) were tested in three concentrations (lower, medium, and higher), two pH values (native or adjusted), and either associated or not with F. Distilled water, F, and stannous ion+fluoride (Sn/F; 225 ppm F- and 800 ppm Sn2+, as SnCl2) solutions were the controls, totalizing 63 groups. HA crystals were pretreated with human saliva for 1 min to allow pellicle formation, then immersed in the experimental solutions (1 min), and exposed to saliva for another 28 min. Subsequently, they were added to a 0.3% citric acid solution (pH = 3.8), connected to a pH-stat system that added aliquots of 28 μL 0.1 N HCl for a total reaction time of 5 min. Data were analyzed with one-way ANOVA and Tukey's tests (α = 0.05). For PA alone, the concentrations of 0.1% (native pH), 0.06%, and 0.08% (both pH adjusted) showed significantly lower HA dissolution than the negative control. PA concentrations of 0.1% and 0.08%, of both pH values, improved the effect of F against HA dissolution to a near-identical value as Sn/F. All solutions containing chitosan and LPP significantly reduced HA dissolution in comparison with the control. For chitosan, the concentration of 0.5% (in both pH values) improved the effect of F. LPP at 0.5% (native pH) and all associations of LPP with F outperformed the effect of F. Some PVM/MA solutions significantly reduced HA dissolution but PVM/MA could not improve the protection of F. PGA was incapable of reducing HA dissolution or improving F effect. It was concluded that chitosan, LPP, and some PA and PVM/MA solutions used alone were capable of reducing HA dissolution. Only PA, chitosan, and LPP were able to enhance fluoride protection, but for PA and chitosan, this was influenced by the polymer concentration.</p>\",\"PeriodicalId\":9620,\"journal\":{\"name\":\"Caries Research\",\"volume\":\" \",\"pages\":\"602-612\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Caries Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000533546\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Caries Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000533546","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Film-Forming Polymers for Inhibition of Hydroxyapatite Dissolution: A Screening Study.
The aim of this study was to evaluate the effect of film-forming polymer solutions of different concentrations and pH values, either associated or not with sodium fluoride (F; 225 ppm F-), when applied during the initial stage of salivary pellicle formation, to prevent the dissolution of hydroxyapatite (HA), which was determined by the pH-stat method. Polyacrylic acid (PA), chitosan, sodium linear polyphosphate (LPP), polyvinyl methyl ether/maleic anhydride (PVM/MA), and propylene glycol alginate (PGA) were tested in three concentrations (lower, medium, and higher), two pH values (native or adjusted), and either associated or not with F. Distilled water, F, and stannous ion+fluoride (Sn/F; 225 ppm F- and 800 ppm Sn2+, as SnCl2) solutions were the controls, totalizing 63 groups. HA crystals were pretreated with human saliva for 1 min to allow pellicle formation, then immersed in the experimental solutions (1 min), and exposed to saliva for another 28 min. Subsequently, they were added to a 0.3% citric acid solution (pH = 3.8), connected to a pH-stat system that added aliquots of 28 μL 0.1 N HCl for a total reaction time of 5 min. Data were analyzed with one-way ANOVA and Tukey's tests (α = 0.05). For PA alone, the concentrations of 0.1% (native pH), 0.06%, and 0.08% (both pH adjusted) showed significantly lower HA dissolution than the negative control. PA concentrations of 0.1% and 0.08%, of both pH values, improved the effect of F against HA dissolution to a near-identical value as Sn/F. All solutions containing chitosan and LPP significantly reduced HA dissolution in comparison with the control. For chitosan, the concentration of 0.5% (in both pH values) improved the effect of F. LPP at 0.5% (native pH) and all associations of LPP with F outperformed the effect of F. Some PVM/MA solutions significantly reduced HA dissolution but PVM/MA could not improve the protection of F. PGA was incapable of reducing HA dissolution or improving F effect. It was concluded that chitosan, LPP, and some PA and PVM/MA solutions used alone were capable of reducing HA dissolution. Only PA, chitosan, and LPP were able to enhance fluoride protection, but for PA and chitosan, this was influenced by the polymer concentration.
期刊介绍:
''Caries Research'' publishes epidemiological, clinical and laboratory studies in dental caries, erosion and related dental diseases. Some studies build on the considerable advances already made in caries prevention, e.g. through fluoride application. Some aim to improve understanding of the increasingly important problem of dental erosion and the associated tooth wear process. Others monitor the changing pattern of caries in different populations, explore improved methods of diagnosis or evaluate methods of prevention or treatment. The broad coverage of current research has given the journal an international reputation as an indispensable source for both basic scientists and clinicians engaged in understanding, investigating and preventing dental disease.