Ksenija Jakovljević, Tomica Mišljenović, Katerina Bačeva Andonovska, Guillaume Echevarria, Alan J M Baker, Dennis Brueckner, Antony van der Ent
{"title":"通过同步加速器μXRF成像证实了Allchar砷铊矿床(北马其顿)紫罗兰的铊超富集状态。","authors":"Ksenija Jakovljević, Tomica Mišljenović, Katerina Bačeva Andonovska, Guillaume Echevarria, Alan J M Baker, Dennis Brueckner, Antony van der Ent","doi":"10.1093/mtomcs/mfad063","DOIUrl":null,"url":null,"abstract":"<p><p>The abandoned Allchar Mine in the Republic of North Macedonia is a globally unique deposit with the highest known grades of thallium (Tl) and arsenic (As) mineralization. We aimed to determine the distribution of As and Tl in whole dehydrated shoots of the three Viola taxa using synchrotron micro-X-ray fluorescence analysis. Additionally, soil and plant organ samples were collected from all three Viola taxa at the Allchar site and analysed using inductively coupled plasma-atomic emission spectrometry. Concentrations of Tl were extremely high in all three Viola taxa (up to 58 900 mg kg-1), but concentrations of As were highly variable with V. tricolor subsp. macedonica and V. allchariensis having low As (up to 20.2 and 26.3 mg kg-1, respectively) and V. arsenica having the highest concentrations (up to 381 mg kg-1). The extremely high Tl in all three species is endogenous and not a result of contamination. Arsenic in V. tricolor subsp. macedonica and V. allcharensis is strongly affected by contamination, but not in V. arsenica where it appears to be endogenous. The pattern of As enrichment in V. arsenica is very unusual and coincides with Ca-oxalate deposits and Br hotspots. The results of this study could form the basis for more detailed investigations under controlled conditions, including plant dosing experiments.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10639103/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thallium hyperaccumulation status of the violets of the Allchar arsenic-thallium deposit (North Macedonia) confirmed through synchrotron µXRF imaging.\",\"authors\":\"Ksenija Jakovljević, Tomica Mišljenović, Katerina Bačeva Andonovska, Guillaume Echevarria, Alan J M Baker, Dennis Brueckner, Antony van der Ent\",\"doi\":\"10.1093/mtomcs/mfad063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The abandoned Allchar Mine in the Republic of North Macedonia is a globally unique deposit with the highest known grades of thallium (Tl) and arsenic (As) mineralization. We aimed to determine the distribution of As and Tl in whole dehydrated shoots of the three Viola taxa using synchrotron micro-X-ray fluorescence analysis. Additionally, soil and plant organ samples were collected from all three Viola taxa at the Allchar site and analysed using inductively coupled plasma-atomic emission spectrometry. Concentrations of Tl were extremely high in all three Viola taxa (up to 58 900 mg kg-1), but concentrations of As were highly variable with V. tricolor subsp. macedonica and V. allchariensis having low As (up to 20.2 and 26.3 mg kg-1, respectively) and V. arsenica having the highest concentrations (up to 381 mg kg-1). The extremely high Tl in all three species is endogenous and not a result of contamination. Arsenic in V. tricolor subsp. macedonica and V. allcharensis is strongly affected by contamination, but not in V. arsenica where it appears to be endogenous. The pattern of As enrichment in V. arsenica is very unusual and coincides with Ca-oxalate deposits and Br hotspots. The results of this study could form the basis for more detailed investigations under controlled conditions, including plant dosing experiments.</p>\",\"PeriodicalId\":89,\"journal\":{\"name\":\"Metallomics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10639103/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/mtomcs/mfad063\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfad063","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Thallium hyperaccumulation status of the violets of the Allchar arsenic-thallium deposit (North Macedonia) confirmed through synchrotron µXRF imaging.
The abandoned Allchar Mine in the Republic of North Macedonia is a globally unique deposit with the highest known grades of thallium (Tl) and arsenic (As) mineralization. We aimed to determine the distribution of As and Tl in whole dehydrated shoots of the three Viola taxa using synchrotron micro-X-ray fluorescence analysis. Additionally, soil and plant organ samples were collected from all three Viola taxa at the Allchar site and analysed using inductively coupled plasma-atomic emission spectrometry. Concentrations of Tl were extremely high in all three Viola taxa (up to 58 900 mg kg-1), but concentrations of As were highly variable with V. tricolor subsp. macedonica and V. allchariensis having low As (up to 20.2 and 26.3 mg kg-1, respectively) and V. arsenica having the highest concentrations (up to 381 mg kg-1). The extremely high Tl in all three species is endogenous and not a result of contamination. Arsenic in V. tricolor subsp. macedonica and V. allcharensis is strongly affected by contamination, but not in V. arsenica where it appears to be endogenous. The pattern of As enrichment in V. arsenica is very unusual and coincides with Ca-oxalate deposits and Br hotspots. The results of this study could form the basis for more detailed investigations under controlled conditions, including plant dosing experiments.