Igor Carvalho, Renata Xavier, Fabiana Fim, Cleumar Moreira, Rossana Santa Cruz
{"title":"石墨烯、二硫化钼和氧化锌场增强型光纤SPR传感器","authors":"Igor Carvalho, Renata Xavier, Fabiana Fim, Cleumar Moreira, Rossana Santa Cruz","doi":"10.1007/s11468-023-01880-3","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene, molybdenum disulfide (MoS<span>\\(_2\\)</span>), and zinc oxide (ZnO) are proposed here to enhance the evanescent field of an optical fiber surface plasmon resonance (SPR) sensor. Gold and silver are the plasmonic materials, and the fiber core material is made of polymethylmethacrylate (PMMA). A Fresnel equations-based analysis is used, and the obtained results pointed out higher values of sensitivity, figure of merit, and FWHM (full-width at half maximum) when compared to conventional SPR sensors. In despite of silver-only based SPR sensor has a better performance, oxidation occurs, and the sensor’s lifetime is reduced. The addition of graphene layers leads to sensitivity values <span>\\(50\\%\\)</span> higher than the conventional sensor. On the other hand, the MoS<span>\\(_2\\)</span>-based sensor improves the interaction of the sensor with the bio-recognition molecules, which is attractive for biomedical applications. When ZnO was added to the silver-based sensor, a highest sensitivity, 4740.9 nm/RIU, was obtained. Graphene-based silver SPR exhibit the highest FOM values.</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"18 5","pages":"1705 - 1713"},"PeriodicalIF":3.3000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Field-Enhancement Optical Fiber SPR Sensor Using Graphene, Molybdenum Disulfide, and Zinc Oxide\",\"authors\":\"Igor Carvalho, Renata Xavier, Fabiana Fim, Cleumar Moreira, Rossana Santa Cruz\",\"doi\":\"10.1007/s11468-023-01880-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graphene, molybdenum disulfide (MoS<span>\\\\(_2\\\\)</span>), and zinc oxide (ZnO) are proposed here to enhance the evanescent field of an optical fiber surface plasmon resonance (SPR) sensor. Gold and silver are the plasmonic materials, and the fiber core material is made of polymethylmethacrylate (PMMA). A Fresnel equations-based analysis is used, and the obtained results pointed out higher values of sensitivity, figure of merit, and FWHM (full-width at half maximum) when compared to conventional SPR sensors. In despite of silver-only based SPR sensor has a better performance, oxidation occurs, and the sensor’s lifetime is reduced. The addition of graphene layers leads to sensitivity values <span>\\\\(50\\\\%\\\\)</span> higher than the conventional sensor. On the other hand, the MoS<span>\\\\(_2\\\\)</span>-based sensor improves the interaction of the sensor with the bio-recognition molecules, which is attractive for biomedical applications. When ZnO was added to the silver-based sensor, a highest sensitivity, 4740.9 nm/RIU, was obtained. Graphene-based silver SPR exhibit the highest FOM values.</p></div>\",\"PeriodicalId\":736,\"journal\":{\"name\":\"Plasmonics\",\"volume\":\"18 5\",\"pages\":\"1705 - 1713\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasmonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11468-023-01880-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11468-023-01880-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A Field-Enhancement Optical Fiber SPR Sensor Using Graphene, Molybdenum Disulfide, and Zinc Oxide
Graphene, molybdenum disulfide (MoS\(_2\)), and zinc oxide (ZnO) are proposed here to enhance the evanescent field of an optical fiber surface plasmon resonance (SPR) sensor. Gold and silver are the plasmonic materials, and the fiber core material is made of polymethylmethacrylate (PMMA). A Fresnel equations-based analysis is used, and the obtained results pointed out higher values of sensitivity, figure of merit, and FWHM (full-width at half maximum) when compared to conventional SPR sensors. In despite of silver-only based SPR sensor has a better performance, oxidation occurs, and the sensor’s lifetime is reduced. The addition of graphene layers leads to sensitivity values \(50\%\) higher than the conventional sensor. On the other hand, the MoS\(_2\)-based sensor improves the interaction of the sensor with the bio-recognition molecules, which is attractive for biomedical applications. When ZnO was added to the silver-based sensor, a highest sensitivity, 4740.9 nm/RIU, was obtained. Graphene-based silver SPR exhibit the highest FOM values.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.