Izhar Ullah, Muhammad Danish Toor, Abdul Basit, Heba I. Mohamed, Mohammed Gamal, Nouraiz Ahmed Tanveer, Syed Tanveer Shah
{"title":"纳米技术:农业生产和植物环境胁迫耐受的综合途径","authors":"Izhar Ullah, Muhammad Danish Toor, Abdul Basit, Heba I. Mohamed, Mohammed Gamal, Nouraiz Ahmed Tanveer, Syed Tanveer Shah","doi":"10.1007/s11270-023-06675-0","DOIUrl":null,"url":null,"abstract":"<div><p>Nanotechnology is a new approach to enhancing the agriculture sector by offering new strategies for fostering tolerance against different stresses and boosting output. Abiotic stresses, especially drought and salinity, are the foremost constraints that may severely affect plant growth and crop production, posing a direct threat to the food supply required to meet the increasing demands of the growing global population. The use of nanotechnology is a step towards a modernized agriculture system that has revealed the promising role of nanoparticles (NPs) in improving the growth of plants and the development of different abiotic stress tolerances by increasing hormonal production and photosynthesis pigments and reducing oxidative stress by activating antioxidant enzymes. Salinity and drought stress trigger a variety of morphological, physiological, biochemical, and molecular alterations that have a negative impact on a number of metabolic processes related to plant growth and productivity. NPs enter the plant system by several routes, mainly through roots and leaves, and interact with plants at cellular and subcellular levels, promoting changes in morphological, biochemical, physiological, and molecular states. Contamination with heavy metals (HM) is a major issue that hinders crop production and threatens food security. Outside the soil, foliar spraying is another better way to improve plant resistance to HM. Nutrient intake can be increased by applying nanofertilizer, which ultimately reduces nutrient losses, improves crop quality and yield, and reduces environmental degradation risk. Nanoparticulate fertilizer contains other NPs, such as cerium NPs, silicon NPs, carbon NPs, and titanium dioxide, that promote plant growth. The review aimed to examine the penetration and transport of nanoparticles in plants in order to comprehend the potential advantages of using nanotechnology in agriculture. Our study focused on presenting the effects of stress conditions on plants, their responses to such conditions, and the nano-based abiotic-mediated mechanisms of plants. Additionally, we also explored the physiochemical characteristics of nano-based metal oxide applications for improving agricultural systems.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"234 11","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11270-023-06675-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Nanotechnology: an Integrated Approach Towards Agriculture Production and Environmental Stress Tolerance in Plants\",\"authors\":\"Izhar Ullah, Muhammad Danish Toor, Abdul Basit, Heba I. Mohamed, Mohammed Gamal, Nouraiz Ahmed Tanveer, Syed Tanveer Shah\",\"doi\":\"10.1007/s11270-023-06675-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanotechnology is a new approach to enhancing the agriculture sector by offering new strategies for fostering tolerance against different stresses and boosting output. Abiotic stresses, especially drought and salinity, are the foremost constraints that may severely affect plant growth and crop production, posing a direct threat to the food supply required to meet the increasing demands of the growing global population. The use of nanotechnology is a step towards a modernized agriculture system that has revealed the promising role of nanoparticles (NPs) in improving the growth of plants and the development of different abiotic stress tolerances by increasing hormonal production and photosynthesis pigments and reducing oxidative stress by activating antioxidant enzymes. Salinity and drought stress trigger a variety of morphological, physiological, biochemical, and molecular alterations that have a negative impact on a number of metabolic processes related to plant growth and productivity. NPs enter the plant system by several routes, mainly through roots and leaves, and interact with plants at cellular and subcellular levels, promoting changes in morphological, biochemical, physiological, and molecular states. Contamination with heavy metals (HM) is a major issue that hinders crop production and threatens food security. Outside the soil, foliar spraying is another better way to improve plant resistance to HM. Nutrient intake can be increased by applying nanofertilizer, which ultimately reduces nutrient losses, improves crop quality and yield, and reduces environmental degradation risk. Nanoparticulate fertilizer contains other NPs, such as cerium NPs, silicon NPs, carbon NPs, and titanium dioxide, that promote plant growth. The review aimed to examine the penetration and transport of nanoparticles in plants in order to comprehend the potential advantages of using nanotechnology in agriculture. Our study focused on presenting the effects of stress conditions on plants, their responses to such conditions, and the nano-based abiotic-mediated mechanisms of plants. Additionally, we also explored the physiochemical characteristics of nano-based metal oxide applications for improving agricultural systems.</p></div>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":\"234 11\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11270-023-06675-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-023-06675-0\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-023-06675-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Nanotechnology: an Integrated Approach Towards Agriculture Production and Environmental Stress Tolerance in Plants
Nanotechnology is a new approach to enhancing the agriculture sector by offering new strategies for fostering tolerance against different stresses and boosting output. Abiotic stresses, especially drought and salinity, are the foremost constraints that may severely affect plant growth and crop production, posing a direct threat to the food supply required to meet the increasing demands of the growing global population. The use of nanotechnology is a step towards a modernized agriculture system that has revealed the promising role of nanoparticles (NPs) in improving the growth of plants and the development of different abiotic stress tolerances by increasing hormonal production and photosynthesis pigments and reducing oxidative stress by activating antioxidant enzymes. Salinity and drought stress trigger a variety of morphological, physiological, biochemical, and molecular alterations that have a negative impact on a number of metabolic processes related to plant growth and productivity. NPs enter the plant system by several routes, mainly through roots and leaves, and interact with plants at cellular and subcellular levels, promoting changes in morphological, biochemical, physiological, and molecular states. Contamination with heavy metals (HM) is a major issue that hinders crop production and threatens food security. Outside the soil, foliar spraying is another better way to improve plant resistance to HM. Nutrient intake can be increased by applying nanofertilizer, which ultimately reduces nutrient losses, improves crop quality and yield, and reduces environmental degradation risk. Nanoparticulate fertilizer contains other NPs, such as cerium NPs, silicon NPs, carbon NPs, and titanium dioxide, that promote plant growth. The review aimed to examine the penetration and transport of nanoparticles in plants in order to comprehend the potential advantages of using nanotechnology in agriculture. Our study focused on presenting the effects of stress conditions on plants, their responses to such conditions, and the nano-based abiotic-mediated mechanisms of plants. Additionally, we also explored the physiochemical characteristics of nano-based metal oxide applications for improving agricultural systems.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.