{"title":"纳米氧化锌和纳米氧化铝地板对太阳能池含盐废水物理性质的比较","authors":"Khadejeh HaghParast, Farshad Farahbod, Alison Zamanpour","doi":"10.1007/s13204-023-02894-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, the efficiency of a solar distillation system as a passive technique in the process of water distillation from wastewater was investigated. The solar distillation process is proposed as a desalination process with zero discharge (ZD), in order to prevent salt water from entering to the sea and using salt water. In this study, three solar ponds with three different floors were used. Laboratory data show that the density of wastewater varies between 1.09 and 1.27 g/cm<sup>3</sup> when using simple flooring. The amount of density changes when using floor covering made of nanozinc oxide is between 1.05 and 1.21 g/cm<sup>3</sup>. Laboratory data show that changes in density when using flooring made of nanoaluminum oxide are between 1 and 1.17 g/cm<sup>3</sup>. The laboratory results show that heat capacity of the wastewater decreases with increase in the depth of the effluent. Results show that flooring made of nanoaluminum oxide increases the rate of evaporation by about 17% and flooring made of zinc oxide by about 11%.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"13 9","pages":"6259 - 6269"},"PeriodicalIF":3.6740,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of the physical properties of saline wastewater in a solar pond with nanozinc oxide and nanoaluminum oxide flooring\",\"authors\":\"Khadejeh HaghParast, Farshad Farahbod, Alison Zamanpour\",\"doi\":\"10.1007/s13204-023-02894-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research, the efficiency of a solar distillation system as a passive technique in the process of water distillation from wastewater was investigated. The solar distillation process is proposed as a desalination process with zero discharge (ZD), in order to prevent salt water from entering to the sea and using salt water. In this study, three solar ponds with three different floors were used. Laboratory data show that the density of wastewater varies between 1.09 and 1.27 g/cm<sup>3</sup> when using simple flooring. The amount of density changes when using floor covering made of nanozinc oxide is between 1.05 and 1.21 g/cm<sup>3</sup>. Laboratory data show that changes in density when using flooring made of nanoaluminum oxide are between 1 and 1.17 g/cm<sup>3</sup>. The laboratory results show that heat capacity of the wastewater decreases with increase in the depth of the effluent. Results show that flooring made of nanoaluminum oxide increases the rate of evaporation by about 17% and flooring made of zinc oxide by about 11%.</p></div>\",\"PeriodicalId\":471,\"journal\":{\"name\":\"Applied Nanoscience\",\"volume\":\"13 9\",\"pages\":\"6259 - 6269\"},\"PeriodicalIF\":3.6740,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Nanoscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13204-023-02894-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-023-02894-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Comparison of the physical properties of saline wastewater in a solar pond with nanozinc oxide and nanoaluminum oxide flooring
In this research, the efficiency of a solar distillation system as a passive technique in the process of water distillation from wastewater was investigated. The solar distillation process is proposed as a desalination process with zero discharge (ZD), in order to prevent salt water from entering to the sea and using salt water. In this study, three solar ponds with three different floors were used. Laboratory data show that the density of wastewater varies between 1.09 and 1.27 g/cm3 when using simple flooring. The amount of density changes when using floor covering made of nanozinc oxide is between 1.05 and 1.21 g/cm3. Laboratory data show that changes in density when using flooring made of nanoaluminum oxide are between 1 and 1.17 g/cm3. The laboratory results show that heat capacity of the wastewater decreases with increase in the depth of the effluent. Results show that flooring made of nanoaluminum oxide increases the rate of evaporation by about 17% and flooring made of zinc oxide by about 11%.
期刊介绍:
Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.