一类含碳化合物(C4O4,C5O5)的合成及其在锂离子电池大容量正极材料中的应用

IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xuesen Hou, Yong Lu, Youxuan Ni, Dongmei Zhang, Qing Zhao, Jun Chen
{"title":"一类含碳化合物(C4O4,C5O5)的合成及其在锂离子电池大容量正极材料中的应用","authors":"Xuesen Hou,&nbsp;Yong Lu,&nbsp;Youxuan Ni,&nbsp;Dongmei Zhang,&nbsp;Qing Zhao,&nbsp;Jun Chen","doi":"10.1007/s11426-023-1800-5","DOIUrl":null,"url":null,"abstract":"<div><p>Oxocarbons (C<sub><i>n</i></sub>O<sub><i>n</i></sub>, <i>n</i>=3, 4, 5, 6, …) are a series of compounds that are only composed of carbonyl groups. The highly electrophilic carbon atoms in C<sub><i>n</i></sub>O<sub><i>n</i></sub> make their poor stability toward H<sub>2</sub>O, and thus the synthesis of C<sub><i>n</i></sub>O<sub><i>n</i></sub> is very challenging. Here an oxidation-dehydration method is developed to successfully synthesize C<sub>4</sub>O<sub>4</sub> and C<sub>5</sub>O<sub>5</sub>. The combination of nuclear magnetic resonance (<sup>13</sup>C NMR, <sup>1</sup>H NMR), mass spectra, and infrared spectra unambiguously proves the exact chemical structure of C<sub>4</sub>O<sub>4</sub> and C<sub>5</sub>O<sub>5</sub>. When used as a cathode material in lithium-ion batteries (LIBs), C<sub>5</sub>O<sub>5</sub> could deliver a high discharge capacity of 698 mAh g<sup>-1</sup> (corresponding to an energy density of 1,256 Wh kg<sup>-1</sup><sub>C5O5</sub>). Furthermore, <i>ex-situ</i> infrared spectra and density functional theory (DFT) calculations demonstrate that the carbonyl groups are redox active sites during discharge and charge processes. This work paves the way to achieve the synthesis and battery application of oxocarbons.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"66 10","pages":"2780 - 2784"},"PeriodicalIF":10.4000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11426-023-1800-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Synthesis of a class of oxocarbons (C4O4, C5O5) and the application as high-capacity cathode materials for lithium-ion batteries\",\"authors\":\"Xuesen Hou,&nbsp;Yong Lu,&nbsp;Youxuan Ni,&nbsp;Dongmei Zhang,&nbsp;Qing Zhao,&nbsp;Jun Chen\",\"doi\":\"10.1007/s11426-023-1800-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Oxocarbons (C<sub><i>n</i></sub>O<sub><i>n</i></sub>, <i>n</i>=3, 4, 5, 6, …) are a series of compounds that are only composed of carbonyl groups. The highly electrophilic carbon atoms in C<sub><i>n</i></sub>O<sub><i>n</i></sub> make their poor stability toward H<sub>2</sub>O, and thus the synthesis of C<sub><i>n</i></sub>O<sub><i>n</i></sub> is very challenging. Here an oxidation-dehydration method is developed to successfully synthesize C<sub>4</sub>O<sub>4</sub> and C<sub>5</sub>O<sub>5</sub>. The combination of nuclear magnetic resonance (<sup>13</sup>C NMR, <sup>1</sup>H NMR), mass spectra, and infrared spectra unambiguously proves the exact chemical structure of C<sub>4</sub>O<sub>4</sub> and C<sub>5</sub>O<sub>5</sub>. When used as a cathode material in lithium-ion batteries (LIBs), C<sub>5</sub>O<sub>5</sub> could deliver a high discharge capacity of 698 mAh g<sup>-1</sup> (corresponding to an energy density of 1,256 Wh kg<sup>-1</sup><sub>C5O5</sub>). Furthermore, <i>ex-situ</i> infrared spectra and density functional theory (DFT) calculations demonstrate that the carbonyl groups are redox active sites during discharge and charge processes. This work paves the way to achieve the synthesis and battery application of oxocarbons.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>\",\"PeriodicalId\":772,\"journal\":{\"name\":\"Science China Chemistry\",\"volume\":\"66 10\",\"pages\":\"2780 - 2784\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11426-023-1800-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11426-023-1800-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-023-1800-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

羰基化合物(CnOn,n=3,4,5,6,…)是一系列仅由羰基组成的化合物。CnOn中高度亲电的碳原子使其对H2O的稳定性较差,因此CnOn的合成非常具有挑战性。采用氧化脱水法成功合成了C4O4和C5O5。核磁共振(13C NMR、1H NMR)、质谱和红外光谱的结合明确地证明了C4O4和C5O5的确切化学结构。当用作锂离子电池(LIBs)中的阴极材料时,C5O5可以提供698mAh g-1的高放电容量(对应于1256 Wh kg-1C5O5的能量密度)。此外,非原位红外光谱和密度泛函理论(DFT)计算表明,羰基在放电和充电过程中是氧化还原活性位点。这项工作为羰基碳的合成和电池应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of a class of oxocarbons (C4O4, C5O5) and the application as high-capacity cathode materials for lithium-ion batteries

Oxocarbons (CnOn, n=3, 4, 5, 6, …) are a series of compounds that are only composed of carbonyl groups. The highly electrophilic carbon atoms in CnOn make their poor stability toward H2O, and thus the synthesis of CnOn is very challenging. Here an oxidation-dehydration method is developed to successfully synthesize C4O4 and C5O5. The combination of nuclear magnetic resonance (13C NMR, 1H NMR), mass spectra, and infrared spectra unambiguously proves the exact chemical structure of C4O4 and C5O5. When used as a cathode material in lithium-ion batteries (LIBs), C5O5 could deliver a high discharge capacity of 698 mAh g-1 (corresponding to an energy density of 1,256 Wh kg-1C5O5). Furthermore, ex-situ infrared spectra and density functional theory (DFT) calculations demonstrate that the carbonyl groups are redox active sites during discharge and charge processes. This work paves the way to achieve the synthesis and battery application of oxocarbons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Chemistry
Science China Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
7.30%
发文量
3787
审稿时长
2.2 months
期刊介绍: Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field. Categories of articles include: Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry. Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies. Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信