Deng Pan , Yinqiao Wang , Hajime Yoshino , Jie Zhang , Yuliang Jin
{"title":"剪切干扰研究综述","authors":"Deng Pan , Yinqiao Wang , Hajime Yoshino , Jie Zhang , Yuliang Jin","doi":"10.1016/j.physrep.2023.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>Jamming is a ubiquitous phenomenon that appears in many soft matter<span><span> systems, including granular materials, foams, colloidal suspensions, emulsions, polymers, and cells — when jamming occurs, the system undergoes a transition from flow-like to solid-like states. Conventionally, the jamming transition occurs when the system reaches a threshold jamming density under isotropic compression, but recent studies reveal that jamming can also be induced by shear. Shear jamming has attracted much interest in the context of non-equilibrium phase transitions, mechanics and rheology of </span>amorphous materials<span><span>. Here we review the phenomenology of shear jamming and its related physics. We first describe basic observations obtained in experiments and simulations, and results from theories. Shear jamming is then demonstrated as a “bridge” that connects the rheology of athermal soft spheres and thermal hard spheres. Based on a generalized jamming </span>phase diagram, a universal description is provided for shear jamming in frictionless and frictional systems. We further review the isostaticity and criticality of the shear jamming transition, and the elasticity of shear jammed solids. The broader relevance of shear jamming is discussed, including its relation to other phenomena such as shear hardening, dilatancy, fragility, and discrete shear thickening.</span></span></p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1038 ","pages":"Pages 1-18"},"PeriodicalIF":23.9000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A review on shear jamming\",\"authors\":\"Deng Pan , Yinqiao Wang , Hajime Yoshino , Jie Zhang , Yuliang Jin\",\"doi\":\"10.1016/j.physrep.2023.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Jamming is a ubiquitous phenomenon that appears in many soft matter<span><span> systems, including granular materials, foams, colloidal suspensions, emulsions, polymers, and cells — when jamming occurs, the system undergoes a transition from flow-like to solid-like states. Conventionally, the jamming transition occurs when the system reaches a threshold jamming density under isotropic compression, but recent studies reveal that jamming can also be induced by shear. Shear jamming has attracted much interest in the context of non-equilibrium phase transitions, mechanics and rheology of </span>amorphous materials<span><span>. Here we review the phenomenology of shear jamming and its related physics. We first describe basic observations obtained in experiments and simulations, and results from theories. Shear jamming is then demonstrated as a “bridge” that connects the rheology of athermal soft spheres and thermal hard spheres. Based on a generalized jamming </span>phase diagram, a universal description is provided for shear jamming in frictionless and frictional systems. We further review the isostaticity and criticality of the shear jamming transition, and the elasticity of shear jammed solids. The broader relevance of shear jamming is discussed, including its relation to other phenomena such as shear hardening, dilatancy, fragility, and discrete shear thickening.</span></span></p></div>\",\"PeriodicalId\":404,\"journal\":{\"name\":\"Physics Reports\",\"volume\":\"1038 \",\"pages\":\"Pages 1-18\"},\"PeriodicalIF\":23.9000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Reports\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370157323003149\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157323003149","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Jamming is a ubiquitous phenomenon that appears in many soft matter systems, including granular materials, foams, colloidal suspensions, emulsions, polymers, and cells — when jamming occurs, the system undergoes a transition from flow-like to solid-like states. Conventionally, the jamming transition occurs when the system reaches a threshold jamming density under isotropic compression, but recent studies reveal that jamming can also be induced by shear. Shear jamming has attracted much interest in the context of non-equilibrium phase transitions, mechanics and rheology of amorphous materials. Here we review the phenomenology of shear jamming and its related physics. We first describe basic observations obtained in experiments and simulations, and results from theories. Shear jamming is then demonstrated as a “bridge” that connects the rheology of athermal soft spheres and thermal hard spheres. Based on a generalized jamming phase diagram, a universal description is provided for shear jamming in frictionless and frictional systems. We further review the isostaticity and criticality of the shear jamming transition, and the elasticity of shear jammed solids. The broader relevance of shear jamming is discussed, including its relation to other phenomena such as shear hardening, dilatancy, fragility, and discrete shear thickening.
期刊介绍:
Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.