硒、锌、铁对冬菇菌丝体硒吸收的交互作用。

Rezvan Ramezannejad, Hamid R Pourianfar, Sharareh Rezaeian
{"title":"硒、锌、铁对冬菇菌丝体硒吸收的交互作用。","authors":"Rezvan Ramezannejad,&nbsp;Hamid R Pourianfar,&nbsp;Sharareh Rezaeian","doi":"10.1615/IntJMedMushrooms.2023050153","DOIUrl":null,"url":null,"abstract":"<p><p>The present study for the first time addressed whether the simultaneous presence of selenium, zinc and iron may have effects on the selenium uptake in the mycelia of the winter mushroom (also known as enoki), Flammulina velutipes. Response surface methodology was used to optimize concentrations of selenium, zinc and iron in the range of 0 to 120 mg L-1. The findings showed that application of selenium, zinc and iron (singly, in pairs, or triads) significantly enhanced the selenium accumulation in the mycelia. The highest amount of the selenium accumulation was observed when selenium (60 mg L-1) and zinc (120 mg L-1) were applied into submerged culture media, concurrently, leading to an 85-fold and 88-fold increase in the selenium content of the mycelia compared to that of the mycelia treated with selenium only and untreated mycelia, respectively. In addition, accumulation of selenium into the mycelia had no deteriorative effects on the mycelial biomass. The findings presented in this study may have implications for daily nutrition and industrial bioproduction of mushroom mycelia enriched with selenium.</p>","PeriodicalId":94323,"journal":{"name":"International journal of medicinal mushrooms","volume":"25 11","pages":"75-87"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive Effects of Selenium, Zinc, and Iron on the Uptake of Selenium in Mycelia of the Culinary-Medicinal Winter Mushroom Flammulina velutipes (Agaricomycetes).\",\"authors\":\"Rezvan Ramezannejad,&nbsp;Hamid R Pourianfar,&nbsp;Sharareh Rezaeian\",\"doi\":\"10.1615/IntJMedMushrooms.2023050153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study for the first time addressed whether the simultaneous presence of selenium, zinc and iron may have effects on the selenium uptake in the mycelia of the winter mushroom (also known as enoki), Flammulina velutipes. Response surface methodology was used to optimize concentrations of selenium, zinc and iron in the range of 0 to 120 mg L-1. The findings showed that application of selenium, zinc and iron (singly, in pairs, or triads) significantly enhanced the selenium accumulation in the mycelia. The highest amount of the selenium accumulation was observed when selenium (60 mg L-1) and zinc (120 mg L-1) were applied into submerged culture media, concurrently, leading to an 85-fold and 88-fold increase in the selenium content of the mycelia compared to that of the mycelia treated with selenium only and untreated mycelia, respectively. In addition, accumulation of selenium into the mycelia had no deteriorative effects on the mycelial biomass. The findings presented in this study may have implications for daily nutrition and industrial bioproduction of mushroom mycelia enriched with selenium.</p>\",\"PeriodicalId\":94323,\"journal\":{\"name\":\"International journal of medicinal mushrooms\",\"volume\":\"25 11\",\"pages\":\"75-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of medicinal mushrooms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/IntJMedMushrooms.2023050153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of medicinal mushrooms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/IntJMedMushrooms.2023050153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究首次探讨了硒、锌和铁的同时存在是否会对冬菇(也称为金针菇)菌丝体的硒吸收产生影响。响应面法用于优化0至120 mg L-1范围内的硒、锌和铁的浓度。研究结果表明,硒、锌和铁(单独、成对或三组)的施用显著增强了硒在菌丝体中的积累。当硒(60 mg L-1)和锌(120 mg L-1。此外,硒在菌丝体中的积累对菌丝体生物量没有破坏作用。本研究的发现可能对富硒蘑菇菌丝体的日常营养和工业生物生产具有启示意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive Effects of Selenium, Zinc, and Iron on the Uptake of Selenium in Mycelia of the Culinary-Medicinal Winter Mushroom Flammulina velutipes (Agaricomycetes).

The present study for the first time addressed whether the simultaneous presence of selenium, zinc and iron may have effects on the selenium uptake in the mycelia of the winter mushroom (also known as enoki), Flammulina velutipes. Response surface methodology was used to optimize concentrations of selenium, zinc and iron in the range of 0 to 120 mg L-1. The findings showed that application of selenium, zinc and iron (singly, in pairs, or triads) significantly enhanced the selenium accumulation in the mycelia. The highest amount of the selenium accumulation was observed when selenium (60 mg L-1) and zinc (120 mg L-1) were applied into submerged culture media, concurrently, leading to an 85-fold and 88-fold increase in the selenium content of the mycelia compared to that of the mycelia treated with selenium only and untreated mycelia, respectively. In addition, accumulation of selenium into the mycelia had no deteriorative effects on the mycelial biomass. The findings presented in this study may have implications for daily nutrition and industrial bioproduction of mushroom mycelia enriched with selenium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信