示踪剂动力学建模的机器学习方法。

IF 1.2
Nuklearmedizin. Nuclear medicine Pub Date : 2023-12-01 Epub Date: 2023-10-11 DOI:10.1055/a-2179-5818
Isabelle Miederer, Kuangyu Shi, Thomas Wendler
{"title":"示踪剂动力学建模的机器学习方法。","authors":"Isabelle Miederer, Kuangyu Shi, Thomas Wendler","doi":"10.1055/a-2179-5818","DOIUrl":null,"url":null,"abstract":"<p><p>Tracer kinetic modelling based on dynamic PET is an important field of Nuclear Medicine for quantitative functional imaging. Yet, its implementation in clinical routine has been constrained by its complexity and computational costs. Machine learning poses an opportunity to improve modelling processes in terms of arterial input function prediction, the prediction of kinetic modelling parameters and model selection in both clinical and preclinical studies while reducing processing time. Moreover, it can help improving kinetic modelling data used in downstream tasks such as tumor detection. In this review, we introduce the basics of tracer kinetic modelling and present a literature review of original works and conference papers using machine learning methods in this field.</p>","PeriodicalId":94161,"journal":{"name":"Nuklearmedizin. Nuclear medicine","volume":" ","pages":"370-378"},"PeriodicalIF":1.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10709136/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning methods for tracer kinetic modelling.\",\"authors\":\"Isabelle Miederer, Kuangyu Shi, Thomas Wendler\",\"doi\":\"10.1055/a-2179-5818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tracer kinetic modelling based on dynamic PET is an important field of Nuclear Medicine for quantitative functional imaging. Yet, its implementation in clinical routine has been constrained by its complexity and computational costs. Machine learning poses an opportunity to improve modelling processes in terms of arterial input function prediction, the prediction of kinetic modelling parameters and model selection in both clinical and preclinical studies while reducing processing time. Moreover, it can help improving kinetic modelling data used in downstream tasks such as tumor detection. In this review, we introduce the basics of tracer kinetic modelling and present a literature review of original works and conference papers using machine learning methods in this field.</p>\",\"PeriodicalId\":94161,\"journal\":{\"name\":\"Nuklearmedizin. Nuclear medicine\",\"volume\":\" \",\"pages\":\"370-378\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10709136/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuklearmedizin. Nuclear medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2179-5818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuklearmedizin. Nuclear medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2179-5818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于动态PET的示踪剂动力学建模是核医学定量功能成像的一个重要领域。然而,其在临床常规中的实施受到其复杂性和计算成本的限制。机器学习为改善临床和临床前研究中动脉输入功能预测、动力学建模参数预测和模型选择方面的建模过程提供了机会,同时减少了处理时间。此外,它可以帮助改进用于肿瘤检测等下游任务的动力学建模数据。在这篇综述中,我们介绍了示踪剂动力学建模的基础,并对该领域使用机器学习方法的原创作品和会议论文进行了文献综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning methods for tracer kinetic modelling.

Machine learning methods for tracer kinetic modelling.

Machine learning methods for tracer kinetic modelling.

Machine learning methods for tracer kinetic modelling.

Tracer kinetic modelling based on dynamic PET is an important field of Nuclear Medicine for quantitative functional imaging. Yet, its implementation in clinical routine has been constrained by its complexity and computational costs. Machine learning poses an opportunity to improve modelling processes in terms of arterial input function prediction, the prediction of kinetic modelling parameters and model selection in both clinical and preclinical studies while reducing processing time. Moreover, it can help improving kinetic modelling data used in downstream tasks such as tumor detection. In this review, we introduce the basics of tracer kinetic modelling and present a literature review of original works and conference papers using machine learning methods in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信