Jiping Han, Yaohua Gu, Changyi Yang, Lingchen Meng, Runmei Ding, Yifan Wang, Keren Shi and Huiqin Yao
{"title":"单原子纳米酶:分类、调控策略和安全问题。","authors":"Jiping Han, Yaohua Gu, Changyi Yang, Lingchen Meng, Runmei Ding, Yifan Wang, Keren Shi and Huiqin Yao","doi":"10.1039/D3TB01644G","DOIUrl":null,"url":null,"abstract":"<p >Nanozymes, nanomaterials possessing enzymatic activity, have been studied extensively by researchers. However, their complex composition, low density of active sites, and inadequate substrate selectivity have hindered the maturation and widespread acceptance of nanozymes. Single-atom nanozymes (SAzymes) with atomically dispersed active sites are leading the field of catalysis due to their exceptional performance. The maximum utilization rate of atoms, low cost, well-defined coordination structure, and active sites are the most prominent advantages of SAzymes that researchers favor. This review systematically categorizes SAzymes based on their support type and describes their specific applications. Additionally, we discuss regulation strategies for SAzyme activity and provide a comprehensive summary of biosafety challenges associated with these enzymes.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 41","pages":" 9840-9866"},"PeriodicalIF":6.1000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-atom nanozymes: classification, regulation strategy, and safety concerns\",\"authors\":\"Jiping Han, Yaohua Gu, Changyi Yang, Lingchen Meng, Runmei Ding, Yifan Wang, Keren Shi and Huiqin Yao\",\"doi\":\"10.1039/D3TB01644G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nanozymes, nanomaterials possessing enzymatic activity, have been studied extensively by researchers. However, their complex composition, low density of active sites, and inadequate substrate selectivity have hindered the maturation and widespread acceptance of nanozymes. Single-atom nanozymes (SAzymes) with atomically dispersed active sites are leading the field of catalysis due to their exceptional performance. The maximum utilization rate of atoms, low cost, well-defined coordination structure, and active sites are the most prominent advantages of SAzymes that researchers favor. This review systematically categorizes SAzymes based on their support type and describes their specific applications. Additionally, we discuss regulation strategies for SAzyme activity and provide a comprehensive summary of biosafety challenges associated with these enzymes.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 41\",\"pages\":\" 9840-9866\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/tb/d3tb01644g\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/tb/d3tb01644g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Single-atom nanozymes: classification, regulation strategy, and safety concerns
Nanozymes, nanomaterials possessing enzymatic activity, have been studied extensively by researchers. However, their complex composition, low density of active sites, and inadequate substrate selectivity have hindered the maturation and widespread acceptance of nanozymes. Single-atom nanozymes (SAzymes) with atomically dispersed active sites are leading the field of catalysis due to their exceptional performance. The maximum utilization rate of atoms, low cost, well-defined coordination structure, and active sites are the most prominent advantages of SAzymes that researchers favor. This review systematically categorizes SAzymes based on their support type and describes their specific applications. Additionally, we discuss regulation strategies for SAzyme activity and provide a comprehensive summary of biosafety challenges associated with these enzymes.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices