局部应用具有淀粉样β肽、p-tau和肿瘤坏死因子α单克隆抗体的纳米线脑磷脂,可以减少脊髓损伤引起的阿尔茨海默病样病理生理学恶化。

International review of neurobiology Pub Date : 2023-01-01 Epub Date: 2023-09-26 DOI:10.1016/bs.irn.2023.05.011
Aruna Sharma, Lianyuan Feng, Dafin F Muresanu, Z Ryan Tian, José Vicente Lafuente, Anca D Buzoianu, Ala Nozari, Lars Wiklund, Hari Shanker Sharma
{"title":"局部应用具有淀粉样β肽、p-tau和肿瘤坏死因子α单克隆抗体的纳米线脑磷脂,可以减少脊髓损伤引起的阿尔茨海默病样病理生理学恶化。","authors":"Aruna Sharma, Lianyuan Feng, Dafin F Muresanu, Z Ryan Tian, José Vicente Lafuente, Anca D Buzoianu, Ala Nozari, Lars Wiklund, Hari Shanker Sharma","doi":"10.1016/bs.irn.2023.05.011","DOIUrl":null,"url":null,"abstract":"<p><p>Hallmark of Alzheimer's disease include amyloid beta peptide and phosphorylated tau deposition in brain that could be aggravated following traumatic of concussive head injury. However, amyloid beta peptide or p-tau in spinal cord following injury is not well known. In this investigation we measured amyloid beta peptide and p-tau together with tumor necrosis factor-alpha (TNF-α) in spinal cord and brain following 48 h after spinal cord injury in relation to the blood-spinal cord and blood-brain barrier, edema formation, blood flow changes and cell injury in perifocal regions of the spinal cord and brain areas. A focal spinal cord injury was inflicted over the right dorsal horn of the T10-11 segment (4 mm long and 2 mm deep) and amyloid beta peptide and p-tau was measured in perifocal rostral (T9) and caudal (T12) spinal cord segments as well as in the brain areas. Our observations showed a significant increase in amyloid beta peptide in the T9 and T12 segments as well as in remote areas of brain and spinal cord after 24 and 48 h injury. This is associated with breakdown of the blood-spinal cord (BSCB) and brain barriers (BBB), edema formation, reduction in blood flow and cell injury. After 48 h of spinal cord injury elevation of amyloid beta peptide, phosphorylated tau (p-tau) and tumor necrosis factor-alpha (TNF-α) was seen in T9 and T12 segments of spinal cord in cerebral cortex, hippocampus and brain stem regions associated with microglial activation as seen by upregulation of Iba1 and CD86. Repeated nanowired delivery of cerebrolysin topically over the traumatized segment repeatedly together with monoclonal antibodies (mAb) to amyloid beta peptide (AβP), p-tau and TNF-α significantly attenuated amyloid beta peptide, p-tau deposition and reduces Iba1, CD68 and TNF-α levels in the brain and spinal cord along with blockade of BBB and BSCB, reduction in blood flow, edema formation and cell injury. These observations are the first to show that spinal cord injury induces Alzheimer's disease like symptoms in the CNS, not reported earlier.</p>","PeriodicalId":94058,"journal":{"name":"International review of neurobiology","volume":"172 ","pages":"3-35"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spinal cord injury induced exacerbation of Alzheimer's disease like pathophysiology is reduced by topical application of nanowired cerebrolysin with monoclonal antibodies to amyloid beta peptide, p-tau and tumor necrosis factor alpha.\",\"authors\":\"Aruna Sharma, Lianyuan Feng, Dafin F Muresanu, Z Ryan Tian, José Vicente Lafuente, Anca D Buzoianu, Ala Nozari, Lars Wiklund, Hari Shanker Sharma\",\"doi\":\"10.1016/bs.irn.2023.05.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hallmark of Alzheimer's disease include amyloid beta peptide and phosphorylated tau deposition in brain that could be aggravated following traumatic of concussive head injury. However, amyloid beta peptide or p-tau in spinal cord following injury is not well known. In this investigation we measured amyloid beta peptide and p-tau together with tumor necrosis factor-alpha (TNF-α) in spinal cord and brain following 48 h after spinal cord injury in relation to the blood-spinal cord and blood-brain barrier, edema formation, blood flow changes and cell injury in perifocal regions of the spinal cord and brain areas. A focal spinal cord injury was inflicted over the right dorsal horn of the T10-11 segment (4 mm long and 2 mm deep) and amyloid beta peptide and p-tau was measured in perifocal rostral (T9) and caudal (T12) spinal cord segments as well as in the brain areas. Our observations showed a significant increase in amyloid beta peptide in the T9 and T12 segments as well as in remote areas of brain and spinal cord after 24 and 48 h injury. This is associated with breakdown of the blood-spinal cord (BSCB) and brain barriers (BBB), edema formation, reduction in blood flow and cell injury. After 48 h of spinal cord injury elevation of amyloid beta peptide, phosphorylated tau (p-tau) and tumor necrosis factor-alpha (TNF-α) was seen in T9 and T12 segments of spinal cord in cerebral cortex, hippocampus and brain stem regions associated with microglial activation as seen by upregulation of Iba1 and CD86. Repeated nanowired delivery of cerebrolysin topically over the traumatized segment repeatedly together with monoclonal antibodies (mAb) to amyloid beta peptide (AβP), p-tau and TNF-α significantly attenuated amyloid beta peptide, p-tau deposition and reduces Iba1, CD68 and TNF-α levels in the brain and spinal cord along with blockade of BBB and BSCB, reduction in blood flow, edema formation and cell injury. These observations are the first to show that spinal cord injury induces Alzheimer's disease like symptoms in the CNS, not reported earlier.</p>\",\"PeriodicalId\":94058,\"journal\":{\"name\":\"International review of neurobiology\",\"volume\":\"172 \",\"pages\":\"3-35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International review of neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.irn.2023.05.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International review of neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.irn.2023.05.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病的霍尔马克包括大脑中的淀粉样蛋白β肽和磷酸化tau沉积,这些沉积可能在脑震荡性头部损伤后加重。然而,损伤后脊髓中的淀粉样β肽或p-tau尚不清楚。在这项研究中,我们测量了脊髓损伤后48小时脊髓和大脑中淀粉样蛋白β肽和p-tau以及肿瘤坏死因子α(TNF-α)与血脊髓和血脑屏障、水肿形成、血流变化以及脊髓和大脑局灶周围区域的细胞损伤的关系。在T10-11节段的右背角(长4mm,深2mm)上造成局灶性脊髓损伤,在局灶性嘴侧(T9)和尾侧(T12)脊髓节段以及大脑区域测量淀粉样蛋白β肽和p-tau。我们的观察结果显示,在损伤24和48小时后,T9和T12段以及大脑和脊髓的偏远区域的淀粉样蛋白β肽显著增加。这与血脊髓(BSCB)和脑屏障(BBB)的破坏、水肿的形成、血流量的减少和细胞损伤有关。脊髓损伤48小时后,淀粉样蛋白β肽、磷酸化tau(p-tau)和肿瘤坏死因子α(TNF-α)在大脑皮层、海马和脑干与小胶质细胞激活相关的脊髓T9和T12段中升高,如Iba1和CD86的上调所示。脑磷脂与淀粉样蛋白β肽(AβP)、P-tau和TNF-α单克隆抗体(mAb)一起,在创伤段上反复纳米线局部递送脑磷脂,显著减弱淀粉样蛋白-β肽、P-tau沉积,降低脑和脊髓中的Iba1、CD68和TNF-A水平,同时阻断血脑屏障和BSCB,减少血流量,水肿形成和细胞损伤。这些观察结果首次表明,脊髓损伤会在中枢神经系统中引发阿尔茨海默病样症状,这在以前没有报道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spinal cord injury induced exacerbation of Alzheimer's disease like pathophysiology is reduced by topical application of nanowired cerebrolysin with monoclonal antibodies to amyloid beta peptide, p-tau and tumor necrosis factor alpha.

Hallmark of Alzheimer's disease include amyloid beta peptide and phosphorylated tau deposition in brain that could be aggravated following traumatic of concussive head injury. However, amyloid beta peptide or p-tau in spinal cord following injury is not well known. In this investigation we measured amyloid beta peptide and p-tau together with tumor necrosis factor-alpha (TNF-α) in spinal cord and brain following 48 h after spinal cord injury in relation to the blood-spinal cord and blood-brain barrier, edema formation, blood flow changes and cell injury in perifocal regions of the spinal cord and brain areas. A focal spinal cord injury was inflicted over the right dorsal horn of the T10-11 segment (4 mm long and 2 mm deep) and amyloid beta peptide and p-tau was measured in perifocal rostral (T9) and caudal (T12) spinal cord segments as well as in the brain areas. Our observations showed a significant increase in amyloid beta peptide in the T9 and T12 segments as well as in remote areas of brain and spinal cord after 24 and 48 h injury. This is associated with breakdown of the blood-spinal cord (BSCB) and brain barriers (BBB), edema formation, reduction in blood flow and cell injury. After 48 h of spinal cord injury elevation of amyloid beta peptide, phosphorylated tau (p-tau) and tumor necrosis factor-alpha (TNF-α) was seen in T9 and T12 segments of spinal cord in cerebral cortex, hippocampus and brain stem regions associated with microglial activation as seen by upregulation of Iba1 and CD86. Repeated nanowired delivery of cerebrolysin topically over the traumatized segment repeatedly together with monoclonal antibodies (mAb) to amyloid beta peptide (AβP), p-tau and TNF-α significantly attenuated amyloid beta peptide, p-tau deposition and reduces Iba1, CD68 and TNF-α levels in the brain and spinal cord along with blockade of BBB and BSCB, reduction in blood flow, edema formation and cell injury. These observations are the first to show that spinal cord injury induces Alzheimer's disease like symptoms in the CNS, not reported earlier.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信