Celine Breton, Kaitlyn Kessel, Ariel Robinson, Kainat Altaf, Eric S Luth
{"title":"亚致死全氟辛酸和全氟辛烷磺酸延缓秀丽隐杆线虫幼虫发育和种群生长,但不会改变卵孵化。","authors":"Celine Breton, Kaitlyn Kessel, Ariel Robinson, Kainat Altaf, Eric S Luth","doi":"10.1080/15287394.2023.2265419","DOIUrl":null,"url":null,"abstract":"<p><p>Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are polyfluoroalkyl substances (PFAS) used as surface coatings in manufacturing. Exposure to PFAS was shown to be correlated with infertility, low birth weight, and delayed aspects of pubertal development in mammals. Despite many correlational studies, there have been few direct investigations examining the link between PFAS exposure and early animal development. The aim of this study was to (1) examine the effects of PFOA on development and reproduction using the roundworm <i>Caenorhabditis elegans</i>, a model with a high predictive value for human reproductive toxicity and (2) compare observations to exposure to PFOS. PFAS exposure did not markedly alter egg hatching but delayed population growth, in part due to slower larval development. PFAS-exposed worms took longer to progress through larval stages to reach reproductive maturity, and this was not attributed to PFOA-induced toxicity to their food. Our results provide a robust benchmark for testing developmental and reproductive toxicity for other PFAS and PFAS-alternatives which continue to be used in manufacturing and released into the environment.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sublethal perfluorooctanoic acid and perfluorooctanesulfonic acid delay <i>C. elegans</i> larval development and population growth but do not alter egg hatching.\",\"authors\":\"Celine Breton, Kaitlyn Kessel, Ariel Robinson, Kainat Altaf, Eric S Luth\",\"doi\":\"10.1080/15287394.2023.2265419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are polyfluoroalkyl substances (PFAS) used as surface coatings in manufacturing. Exposure to PFAS was shown to be correlated with infertility, low birth weight, and delayed aspects of pubertal development in mammals. Despite many correlational studies, there have been few direct investigations examining the link between PFAS exposure and early animal development. The aim of this study was to (1) examine the effects of PFOA on development and reproduction using the roundworm <i>Caenorhabditis elegans</i>, a model with a high predictive value for human reproductive toxicity and (2) compare observations to exposure to PFOS. PFAS exposure did not markedly alter egg hatching but delayed population growth, in part due to slower larval development. PFAS-exposed worms took longer to progress through larval stages to reach reproductive maturity, and this was not attributed to PFOA-induced toxicity to their food. Our results provide a robust benchmark for testing developmental and reproductive toxicity for other PFAS and PFAS-alternatives which continue to be used in manufacturing and released into the environment.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15287394.2023.2265419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15287394.2023.2265419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Sublethal perfluorooctanoic acid and perfluorooctanesulfonic acid delay C. elegans larval development and population growth but do not alter egg hatching.
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are polyfluoroalkyl substances (PFAS) used as surface coatings in manufacturing. Exposure to PFAS was shown to be correlated with infertility, low birth weight, and delayed aspects of pubertal development in mammals. Despite many correlational studies, there have been few direct investigations examining the link between PFAS exposure and early animal development. The aim of this study was to (1) examine the effects of PFOA on development and reproduction using the roundworm Caenorhabditis elegans, a model with a high predictive value for human reproductive toxicity and (2) compare observations to exposure to PFOS. PFAS exposure did not markedly alter egg hatching but delayed population growth, in part due to slower larval development. PFAS-exposed worms took longer to progress through larval stages to reach reproductive maturity, and this was not attributed to PFOA-induced toxicity to their food. Our results provide a robust benchmark for testing developmental and reproductive toxicity for other PFAS and PFAS-alternatives which continue to be used in manufacturing and released into the environment.