Li Tong;Wenqi Shi;Monica Isgut;Yishan Zhong;Peter Lais;Logan Gloster;Jimin Sun;Aniketh Swain;Felipe Giuste;May D. Wang
{"title":"利用先进的人工智能将多组学数据与EHR集成用于精准医学。","authors":"Li Tong;Wenqi Shi;Monica Isgut;Yishan Zhong;Peter Lais;Logan Gloster;Jimin Sun;Aniketh Swain;Felipe Giuste;May D. Wang","doi":"10.1109/RBME.2023.3324264","DOIUrl":null,"url":null,"abstract":"With the recent advancement of novel biomedical technologies such as high-throughput sequencing and wearable devices, multi-modal biomedical data ranging from multi-omics molecular data to real-time continuous bio-signals are generated at an unprecedented speed and scale every day. For the first time, these multi-modal biomedical data are able to make precision medicine close to a reality. However, due to data volume and the complexity, making good use of these multi-modal biomedical data requires major effort. Researchers and clinicians are actively developing artificial intelligence (AI) approaches for data-driven knowledge discovery and causal inference using a variety of biomedical data modalities. These AI-based approaches have demonstrated promising results in various biomedical and healthcare applications. In this review paper, we summarize the state-of-the-art AI models for integrating multi-omics data and electronic health records (EHRs) for precision medicine. We discuss the challenges and opportunities in integrating multi-omics data with EHRs and future directions. We hope this review can inspire future research and developing in integrating multi-omics data with EHRs for precision medicine.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":17.2000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10283869","citationCount":"0","resultStr":"{\"title\":\"Integrating Multi-Omics Data With EHR for Precision Medicine Using Advanced Artificial Intelligence\",\"authors\":\"Li Tong;Wenqi Shi;Monica Isgut;Yishan Zhong;Peter Lais;Logan Gloster;Jimin Sun;Aniketh Swain;Felipe Giuste;May D. Wang\",\"doi\":\"10.1109/RBME.2023.3324264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the recent advancement of novel biomedical technologies such as high-throughput sequencing and wearable devices, multi-modal biomedical data ranging from multi-omics molecular data to real-time continuous bio-signals are generated at an unprecedented speed and scale every day. For the first time, these multi-modal biomedical data are able to make precision medicine close to a reality. However, due to data volume and the complexity, making good use of these multi-modal biomedical data requires major effort. Researchers and clinicians are actively developing artificial intelligence (AI) approaches for data-driven knowledge discovery and causal inference using a variety of biomedical data modalities. These AI-based approaches have demonstrated promising results in various biomedical and healthcare applications. In this review paper, we summarize the state-of-the-art AI models for integrating multi-omics data and electronic health records (EHRs) for precision medicine. We discuss the challenges and opportunities in integrating multi-omics data with EHRs and future directions. We hope this review can inspire future research and developing in integrating multi-omics data with EHRs for precision medicine.\",\"PeriodicalId\":39235,\"journal\":{\"name\":\"IEEE Reviews in Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10283869\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10283869/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10283869/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Integrating Multi-Omics Data With EHR for Precision Medicine Using Advanced Artificial Intelligence
With the recent advancement of novel biomedical technologies such as high-throughput sequencing and wearable devices, multi-modal biomedical data ranging from multi-omics molecular data to real-time continuous bio-signals are generated at an unprecedented speed and scale every day. For the first time, these multi-modal biomedical data are able to make precision medicine close to a reality. However, due to data volume and the complexity, making good use of these multi-modal biomedical data requires major effort. Researchers and clinicians are actively developing artificial intelligence (AI) approaches for data-driven knowledge discovery and causal inference using a variety of biomedical data modalities. These AI-based approaches have demonstrated promising results in various biomedical and healthcare applications. In this review paper, we summarize the state-of-the-art AI models for integrating multi-omics data and electronic health records (EHRs) for precision medicine. We discuss the challenges and opportunities in integrating multi-omics data with EHRs and future directions. We hope this review can inspire future research and developing in integrating multi-omics data with EHRs for precision medicine.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.