将种族分类置于背景中。

IF 3 Q1 SOCIOLOGY
Socius Pub Date : 2019-01-01 Epub Date: 2019-06-25 DOI:10.1177/2378023119851016
Robert E M Pickett, Aliya Saperstein, Andrew M Penner
{"title":"将种族分类置于背景中。","authors":"Robert E M Pickett,&nbsp;Aliya Saperstein,&nbsp;Andrew M Penner","doi":"10.1177/2378023119851016","DOIUrl":null,"url":null,"abstract":"<p><p>This article extends previous research on place-based patterns of racial categorization by linking it to sociological theory that posits subnational variation in cultural schemas and applying regression techniques that allow for spatial variation in model estimates. We use data from a U.S. restricted-use geocoded longitudinal survey to predict racial classification as a function of both individual and county characteristics. We first estimate national average associations, then turn to spatial-regime models and geographically weighted regression to explore how these relationships vary across the country. We find that individual characteristics matter most for classification as \"Black,\" while contextual characteristics are important predictors of classification as \"White\" or \"Other,\" but some predictors also vary across space, as expected. These results affirm the importance of place in defining racial boundaries and suggest that U.S. racial schemas operate at different spatial scales, with some being national in scope while others are more locally situated.</p>","PeriodicalId":36345,"journal":{"name":"Socius","volume":"5 ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2378023119851016","citationCount":"6","resultStr":"{\"title\":\"Placing Racial Classification in Context.\",\"authors\":\"Robert E M Pickett,&nbsp;Aliya Saperstein,&nbsp;Andrew M Penner\",\"doi\":\"10.1177/2378023119851016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article extends previous research on place-based patterns of racial categorization by linking it to sociological theory that posits subnational variation in cultural schemas and applying regression techniques that allow for spatial variation in model estimates. We use data from a U.S. restricted-use geocoded longitudinal survey to predict racial classification as a function of both individual and county characteristics. We first estimate national average associations, then turn to spatial-regime models and geographically weighted regression to explore how these relationships vary across the country. We find that individual characteristics matter most for classification as \\\"Black,\\\" while contextual characteristics are important predictors of classification as \\\"White\\\" or \\\"Other,\\\" but some predictors also vary across space, as expected. These results affirm the importance of place in defining racial boundaries and suggest that U.S. racial schemas operate at different spatial scales, with some being national in scope while others are more locally situated.</p>\",\"PeriodicalId\":36345,\"journal\":{\"name\":\"Socius\",\"volume\":\"5 \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2378023119851016\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Socius\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2378023119851016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/6/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Socius","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2378023119851016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/6/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"SOCIOLOGY","Score":null,"Total":0}
引用次数: 6

摘要

这篇文章扩展了以前对基于地点的种族分类模式的研究,将其与社会学理论联系起来,社会学理论认为文化模式存在国家以下的差异,并应用回归技术,在模型估计中考虑空间差异。我们使用来自美国限制使用地理编码纵向调查的数据,预测种族分类作为个人和县特征的函数。我们首先估计了全国平均关联,然后转向空间制度模型和地理加权回归,以探索这些关系在全国范围内的变化。我们发现,个人特征对“黑人”的分类最为重要,而上下文特征是“白人”或“其他人”分类的重要预测因素,但正如预期的那样,一些预测因素也会随着空间的变化而变化。这些结果肯定了地点在定义种族边界方面的重要性,并表明美国的种族图式在不同的空间尺度上运作,其中一些在范围上是全国性的,而另一些则更具地方性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Placing Racial Classification in Context.

Placing Racial Classification in Context.

Placing Racial Classification in Context.

Placing Racial Classification in Context.

This article extends previous research on place-based patterns of racial categorization by linking it to sociological theory that posits subnational variation in cultural schemas and applying regression techniques that allow for spatial variation in model estimates. We use data from a U.S. restricted-use geocoded longitudinal survey to predict racial classification as a function of both individual and county characteristics. We first estimate national average associations, then turn to spatial-regime models and geographically weighted regression to explore how these relationships vary across the country. We find that individual characteristics matter most for classification as "Black," while contextual characteristics are important predictors of classification as "White" or "Other," but some predictors also vary across space, as expected. These results affirm the importance of place in defining racial boundaries and suggest that U.S. racial schemas operate at different spatial scales, with some being national in scope while others are more locally situated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Socius
Socius Social Sciences-Social Sciences (all)
CiteScore
5.10
自引率
6.70%
发文量
84
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信