西班牙裔社区健康研究/拉丁裔研究中暴露不完全测量的孟德尔随机化。

IF 3.3 Q2 GENETICS & HEREDITY
HGG Advances Pub Date : 2024-01-11 Epub Date: 2023-10-28 DOI:10.1016/j.xhgg.2023.100245
Yilun Li, Kin Yau Wong, Annie Green Howard, Penny Gordon-Larsen, Heather M Highland, Mariaelisa Graff, Kari E North, Carolina G Downie, Christy L Avery, Bing Yu, Kristin L Young, Victoria L Buchanan, Robert Kaplan, Lifang Hou, Brian Thomas Joyce, Qibin Qi, Tamar Sofer, Jee-Young Moon, Dan-Yu Lin
{"title":"西班牙裔社区健康研究/拉丁裔研究中暴露不完全测量的孟德尔随机化。","authors":"Yilun Li, Kin Yau Wong, Annie Green Howard, Penny Gordon-Larsen, Heather M Highland, Mariaelisa Graff, Kari E North, Carolina G Downie, Christy L Avery, Bing Yu, Kristin L Young, Victoria L Buchanan, Robert Kaplan, Lifang Hou, Brian Thomas Joyce, Qibin Qi, Tamar Sofer, Jee-Young Moon, Dan-Yu Lin","doi":"10.1016/j.xhgg.2023.100245","DOIUrl":null,"url":null,"abstract":"<p><p>Mendelian randomization has been widely used to assess the causal effect of a heritable exposure variable on an outcome of interest, using genetic variants as instrumental variables. In practice, data on the exposure variable can be incomplete due to high cost of measurement and technical limits of detection. In this paper, we propose a valid and efficient method to handle both unmeasured and undetectable values of the exposure variable in one-sample Mendelian randomization analysis with individual-level data. We estimate the causal effect of the exposure variable on the outcome using maximum likelihood estimation and develop an expectation maximization algorithm for the computation of the estimator. Simulation studies show that the proposed method performs well in making inference on the causal effect. We apply our method to the Hispanic Community Health Study/Study of Latinos, a community-based prospective cohort study, and estimate the causal effect of several metabolites on phenotypes of interest.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628889/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mendelian randomization with incomplete measurements on the exposure in the Hispanic Community Health Study/Study of Latinos.\",\"authors\":\"Yilun Li, Kin Yau Wong, Annie Green Howard, Penny Gordon-Larsen, Heather M Highland, Mariaelisa Graff, Kari E North, Carolina G Downie, Christy L Avery, Bing Yu, Kristin L Young, Victoria L Buchanan, Robert Kaplan, Lifang Hou, Brian Thomas Joyce, Qibin Qi, Tamar Sofer, Jee-Young Moon, Dan-Yu Lin\",\"doi\":\"10.1016/j.xhgg.2023.100245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mendelian randomization has been widely used to assess the causal effect of a heritable exposure variable on an outcome of interest, using genetic variants as instrumental variables. In practice, data on the exposure variable can be incomplete due to high cost of measurement and technical limits of detection. In this paper, we propose a valid and efficient method to handle both unmeasured and undetectable values of the exposure variable in one-sample Mendelian randomization analysis with individual-level data. We estimate the causal effect of the exposure variable on the outcome using maximum likelihood estimation and develop an expectation maximization algorithm for the computation of the estimator. Simulation studies show that the proposed method performs well in making inference on the causal effect. We apply our method to the Hispanic Community Health Study/Study of Latinos, a community-based prospective cohort study, and estimate the causal effect of several metabolites on phenotypes of interest.</p>\",\"PeriodicalId\":34530,\"journal\":{\"name\":\"HGG Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628889/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HGG Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xhgg.2023.100245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2023.100245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

孟德尔随机化已被广泛用于评估可遗传暴露变量对感兴趣结果的因果影响,使用遗传变异作为工具变量。在实践中,由于测量成本高和检测技术限制,关于暴露变量的数据可能是不完整的。在本文中,我们提出了一种有效的方法来处理单样本孟德尔随机化分析中个体水平数据的暴露变量的未测量值和未检测值。我们使用最大似然估计来估计暴露变量对结果的因果影响,并开发了一种用于估计量计算的期望最大化算法。仿真研究表明,该方法能够很好地对因果效应进行推理。我们将我们的方法应用于西班牙裔社区健康研究/拉丁裔研究,这是一项基于社区的前瞻性队列研究,并估计了几种代谢物对感兴趣表型的因果影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mendelian randomization with incomplete measurements on the exposure in the Hispanic Community Health Study/Study of Latinos.

Mendelian randomization has been widely used to assess the causal effect of a heritable exposure variable on an outcome of interest, using genetic variants as instrumental variables. In practice, data on the exposure variable can be incomplete due to high cost of measurement and technical limits of detection. In this paper, we propose a valid and efficient method to handle both unmeasured and undetectable values of the exposure variable in one-sample Mendelian randomization analysis with individual-level data. We estimate the causal effect of the exposure variable on the outcome using maximum likelihood estimation and develop an expectation maximization algorithm for the computation of the estimator. Simulation studies show that the proposed method performs well in making inference on the causal effect. We apply our method to the Hispanic Community Health Study/Study of Latinos, a community-based prospective cohort study, and estimate the causal effect of several metabolites on phenotypes of interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信