Hao Yang , Jiangkun Wei , Weilin Xia , Siqin Ge , Jianing Wu
{"title":"成年犀甲虫会以清扫的方式摄取高粘度的液体。","authors":"Hao Yang , Jiangkun Wei , Weilin Xia , Siqin Ge , Jianing Wu","doi":"10.1016/j.jinsphys.2023.104572","DOIUrl":null,"url":null,"abstract":"<div><p>More than half of all insect species utilize various natural liquids as primary diet. The concentrated liquids with energy-dense nutrition can provide highly favorable rewards, however, their high-viscosity poses challenges to the insect for ingesting. Here we show that rhinoceros beetles, <em>Trypoxylus dichotomus</em> (Coleoptera: Scarabaeidae), are capable of ingesting sugar solutions with viscosities spanning four orders of magnitude, exhibiting extraordinary adaptability to diverse natural liquid sources. We discovered a previously unidentified maxillae-sweeping motion that beetles preferentially adopt to consume highly viscous liquids, achieving a higher feeding rate than the more common direct sucking. By utilizing morphological characterizations, flow visualization, and fluid–structure coupling simulation, we revealed the underlying mechanisms of how this maxillary movement facilitates the transportation of viscous liquid. Our findings not only shed light on the multi-functionality of beetle mouthparts but also provide insights into the adaptability of generalized mouthparts to a broad range of fluid sources.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"151 ","pages":"Article 104572"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adult rhinoceros beetles use a sweeping pattern to ingest high-viscosity fluid\",\"authors\":\"Hao Yang , Jiangkun Wei , Weilin Xia , Siqin Ge , Jianing Wu\",\"doi\":\"10.1016/j.jinsphys.2023.104572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>More than half of all insect species utilize various natural liquids as primary diet. The concentrated liquids with energy-dense nutrition can provide highly favorable rewards, however, their high-viscosity poses challenges to the insect for ingesting. Here we show that rhinoceros beetles, <em>Trypoxylus dichotomus</em> (Coleoptera: Scarabaeidae), are capable of ingesting sugar solutions with viscosities spanning four orders of magnitude, exhibiting extraordinary adaptability to diverse natural liquid sources. We discovered a previously unidentified maxillae-sweeping motion that beetles preferentially adopt to consume highly viscous liquids, achieving a higher feeding rate than the more common direct sucking. By utilizing morphological characterizations, flow visualization, and fluid–structure coupling simulation, we revealed the underlying mechanisms of how this maxillary movement facilitates the transportation of viscous liquid. Our findings not only shed light on the multi-functionality of beetle mouthparts but also provide insights into the adaptability of generalized mouthparts to a broad range of fluid sources.</p></div>\",\"PeriodicalId\":16189,\"journal\":{\"name\":\"Journal of insect physiology\",\"volume\":\"151 \",\"pages\":\"Article 104572\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of insect physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022191023000987\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of insect physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022191023000987","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Adult rhinoceros beetles use a sweeping pattern to ingest high-viscosity fluid
More than half of all insect species utilize various natural liquids as primary diet. The concentrated liquids with energy-dense nutrition can provide highly favorable rewards, however, their high-viscosity poses challenges to the insect for ingesting. Here we show that rhinoceros beetles, Trypoxylus dichotomus (Coleoptera: Scarabaeidae), are capable of ingesting sugar solutions with viscosities spanning four orders of magnitude, exhibiting extraordinary adaptability to diverse natural liquid sources. We discovered a previously unidentified maxillae-sweeping motion that beetles preferentially adopt to consume highly viscous liquids, achieving a higher feeding rate than the more common direct sucking. By utilizing morphological characterizations, flow visualization, and fluid–structure coupling simulation, we revealed the underlying mechanisms of how this maxillary movement facilitates the transportation of viscous liquid. Our findings not only shed light on the multi-functionality of beetle mouthparts but also provide insights into the adaptability of generalized mouthparts to a broad range of fluid sources.
期刊介绍:
All aspects of insect physiology are published in this journal which will also accept papers on the physiology of other arthropods, if the referees consider the work to be of general interest. The coverage includes endocrinology (in relation to moulting, reproduction and metabolism), pheromones, neurobiology (cellular, integrative and developmental), physiological pharmacology, nutrition (food selection, digestion and absorption), homeostasis, excretion, reproduction and behaviour. Papers covering functional genomics and molecular approaches to physiological problems will also be included. Communications on structure and applied entomology can be published if the subject matter has an explicit bearing on the physiology of arthropods. Review articles and novel method papers are also welcomed.