Aleksandra Krawczyk, Sylwia Mozel, Karol Rycerz, Jadwiga Jaworska-Adamu, Marcin Bartłomiej Arciszewski
{"title":"谷氨酸单钠处理成年大鼠腰背根神经节神经元不同亚群周围卫星神经胶质中谷氨酰胺合成酶的免疫反应性。","authors":"Aleksandra Krawczyk, Sylwia Mozel, Karol Rycerz, Jadwiga Jaworska-Adamu, Marcin Bartłomiej Arciszewski","doi":"10.1016/j.jchemneu.2023.102347","DOIUrl":null,"url":null,"abstract":"<div><p>Satellite glial cells (SGCs), involved inter alia in glutamate (Glu) metabolism, form a glial sheath around sensory neurons of dorsal root ganglia (DRGs). SGCs show a presence of glutamine synthetase (GS) which transform uptaken Glu into glutamine (Gln). In DRGs, this aminoacid is used mainly by small neurons which are able to synthetize substance P (SP) that play a crucial role in nociception. The aim of the study was to define the influence of monosodium glutamate (MSG) on GS immunoreactivity in satellite glia around various subpopulations of neurons including SP immunopositive cells in DRGs of adult rats. The studies were carried out on lumbar DRGs slides in rats which received subcutaneous injection of saline solution (control group) or 4 g/kg b. w. of MSG (MSG group). Immunofluorescence reactions were conducted with use of anti-GS and anti-SP antibodies. Administration of MSG to adult rats increased the GS immunoexpression in SGCs. In rats receiving MSG, a number of small neurons with GS-immunopositive glial sheath was not altered when compared to control individuals, whereas there was a statistically significant increase of GS immunoexpression in SGCs around large and medium neurons. Moreover, in these animals, a statistically significant increase in the number of small SP-positive neurons with GS-positive glial sheath was observed. SP is responsible for transmission of pain, thus the obtained results may be useful for further research concerning the roles of glia in nociceptive pathway regulation.</p></div>","PeriodicalId":15324,"journal":{"name":"Journal of chemical neuroanatomy","volume":"134 ","pages":"Article 102347"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immunoreactivity of glutamine synthetase in satellite glia around various subpopulations of lumbar dorsal root ganglia neurons in adult rats treated with monosodium glutamate\",\"authors\":\"Aleksandra Krawczyk, Sylwia Mozel, Karol Rycerz, Jadwiga Jaworska-Adamu, Marcin Bartłomiej Arciszewski\",\"doi\":\"10.1016/j.jchemneu.2023.102347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Satellite glial cells (SGCs), involved inter alia in glutamate (Glu) metabolism, form a glial sheath around sensory neurons of dorsal root ganglia (DRGs). SGCs show a presence of glutamine synthetase (GS) which transform uptaken Glu into glutamine (Gln). In DRGs, this aminoacid is used mainly by small neurons which are able to synthetize substance P (SP) that play a crucial role in nociception. The aim of the study was to define the influence of monosodium glutamate (MSG) on GS immunoreactivity in satellite glia around various subpopulations of neurons including SP immunopositive cells in DRGs of adult rats. The studies were carried out on lumbar DRGs slides in rats which received subcutaneous injection of saline solution (control group) or 4 g/kg b. w. of MSG (MSG group). Immunofluorescence reactions were conducted with use of anti-GS and anti-SP antibodies. Administration of MSG to adult rats increased the GS immunoexpression in SGCs. In rats receiving MSG, a number of small neurons with GS-immunopositive glial sheath was not altered when compared to control individuals, whereas there was a statistically significant increase of GS immunoexpression in SGCs around large and medium neurons. Moreover, in these animals, a statistically significant increase in the number of small SP-positive neurons with GS-positive glial sheath was observed. SP is responsible for transmission of pain, thus the obtained results may be useful for further research concerning the roles of glia in nociceptive pathway regulation.</p></div>\",\"PeriodicalId\":15324,\"journal\":{\"name\":\"Journal of chemical neuroanatomy\",\"volume\":\"134 \",\"pages\":\"Article 102347\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of chemical neuroanatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0891061823001175\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891061823001175","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Immunoreactivity of glutamine synthetase in satellite glia around various subpopulations of lumbar dorsal root ganglia neurons in adult rats treated with monosodium glutamate
Satellite glial cells (SGCs), involved inter alia in glutamate (Glu) metabolism, form a glial sheath around sensory neurons of dorsal root ganglia (DRGs). SGCs show a presence of glutamine synthetase (GS) which transform uptaken Glu into glutamine (Gln). In DRGs, this aminoacid is used mainly by small neurons which are able to synthetize substance P (SP) that play a crucial role in nociception. The aim of the study was to define the influence of monosodium glutamate (MSG) on GS immunoreactivity in satellite glia around various subpopulations of neurons including SP immunopositive cells in DRGs of adult rats. The studies were carried out on lumbar DRGs slides in rats which received subcutaneous injection of saline solution (control group) or 4 g/kg b. w. of MSG (MSG group). Immunofluorescence reactions were conducted with use of anti-GS and anti-SP antibodies. Administration of MSG to adult rats increased the GS immunoexpression in SGCs. In rats receiving MSG, a number of small neurons with GS-immunopositive glial sheath was not altered when compared to control individuals, whereas there was a statistically significant increase of GS immunoexpression in SGCs around large and medium neurons. Moreover, in these animals, a statistically significant increase in the number of small SP-positive neurons with GS-positive glial sheath was observed. SP is responsible for transmission of pain, thus the obtained results may be useful for further research concerning the roles of glia in nociceptive pathway regulation.
期刊介绍:
The Journal of Chemical Neuroanatomy publishes scientific reports relating the functional and biochemical aspects of the nervous system with its microanatomical organization. The scope of the journal concentrates on reports which combine microanatomical, biochemical, pharmacological and behavioural approaches.
Papers should offer original data correlating the morphology of the nervous system (the brain and spinal cord in particular) with its biochemistry. The Journal of Chemical Neuroanatomy is particularly interested in publishing important studies performed with up-to-date methodology utilizing sensitive chemical microassays, hybridoma technology, immunocytochemistry, in situ hybridization and receptor radioautography, to name a few examples.
The Journal of Chemical Neuroanatomy is the natural vehicle for integrated studies utilizing these approaches. The articles will be selected by the editorial board and invited reviewers on the basis of their excellence and potential contribution to this field of neurosciences. Both in vivo and in vitro integrated studies in chemical neuroanatomy are appropriate subjects of interest to the journal. These studies should relate only to vertebrate species with particular emphasis on the mammalian and primate nervous systems.