扩大全球作物害虫铃木果蝇的遗传工具箱:眼睛颜色突变株的分离和评估。

IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Amarish K. Yadav, Ramasamy Asokan, Akihiko Yamamoto, Anandrao A. Patil, Maxwell J. Scott
{"title":"扩大全球作物害虫铃木果蝇的遗传工具箱:眼睛颜色突变株的分离和评估。","authors":"Amarish K. Yadav,&nbsp;Ramasamy Asokan,&nbsp;Akihiko Yamamoto,&nbsp;Anandrao A. Patil,&nbsp;Maxwell J. Scott","doi":"10.1111/imb.12879","DOIUrl":null,"url":null,"abstract":"<p><i>Drosophila suzukii</i> (Matsumura) (Diptera: Drosophilidae), commonly called spotted wing Drosophila, is an important agricultural pest recognised worldwide. <i>D. suzukii</i> is a pest of soft-skinned fruits as females can lay eggs in ripening fruit before harvest. While strains for genetic biocontrol of <i>D. suzukii</i> have been made, the development of transgenic <i>D. suzukii</i> strains and their further screening remain a challenge partly due to the lack of phenotypically trackable genetic-markers, such as those widely used with the model genetic organism <i>D. melanogaster</i>. Here, we have used CRISPR/Cas9 to introduce heritable mutations in the eye colour genes <i>white</i>, <i>cinnabar</i> and <i>sepia</i>, which are located on the X, second and third chromosomes, respectively. Strains were obtained, which were homozygous for a single mutation. Genotyping of the established strains showed insertion and/or deletions (indels) at the targeted sites. A strain homozygous for mutations in <i>cinnabar</i> and <i>sepia</i> showed a pale-yellow eye colour at eclosion but darkened to a sepia colour after a week. The fecundity and fertility of some of the <i>cinnabar</i> and <i>sepia</i> strains were comparable with the wild type. Although <i>white</i> mutant males were previously reported to be sterile, we found that sterility is not fully penetrant and we have been able to maintain white-eyed strains for over a year. The <i>cinnabar</i>, <i>sepia</i> and <i>white</i> mutant strains developed in this study should facilitate future genetic studies in <i>D. suzukii</i> and the development of strains for genetic control of this pest.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12879","citationCount":"0","resultStr":"{\"title\":\"Expansion of the genetic toolbox for manipulation of the global crop pest Drosophila suzukii: Isolation and assessment of eye colour mutant strains\",\"authors\":\"Amarish K. Yadav,&nbsp;Ramasamy Asokan,&nbsp;Akihiko Yamamoto,&nbsp;Anandrao A. Patil,&nbsp;Maxwell J. Scott\",\"doi\":\"10.1111/imb.12879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Drosophila suzukii</i> (Matsumura) (Diptera: Drosophilidae), commonly called spotted wing Drosophila, is an important agricultural pest recognised worldwide. <i>D. suzukii</i> is a pest of soft-skinned fruits as females can lay eggs in ripening fruit before harvest. While strains for genetic biocontrol of <i>D. suzukii</i> have been made, the development of transgenic <i>D. suzukii</i> strains and their further screening remain a challenge partly due to the lack of phenotypically trackable genetic-markers, such as those widely used with the model genetic organism <i>D. melanogaster</i>. Here, we have used CRISPR/Cas9 to introduce heritable mutations in the eye colour genes <i>white</i>, <i>cinnabar</i> and <i>sepia</i>, which are located on the X, second and third chromosomes, respectively. Strains were obtained, which were homozygous for a single mutation. Genotyping of the established strains showed insertion and/or deletions (indels) at the targeted sites. A strain homozygous for mutations in <i>cinnabar</i> and <i>sepia</i> showed a pale-yellow eye colour at eclosion but darkened to a sepia colour after a week. The fecundity and fertility of some of the <i>cinnabar</i> and <i>sepia</i> strains were comparable with the wild type. Although <i>white</i> mutant males were previously reported to be sterile, we found that sterility is not fully penetrant and we have been able to maintain white-eyed strains for over a year. The <i>cinnabar</i>, <i>sepia</i> and <i>white</i> mutant strains developed in this study should facilitate future genetic studies in <i>D. suzukii</i> and the development of strains for genetic control of this pest.</p>\",\"PeriodicalId\":13526,\"journal\":{\"name\":\"Insect Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12879\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/imb.12879\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imb.12879","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铃木果蝇(Drosophila suzukii,Matsumura)(直翅目:Drosophilidae),通常被称为斑翼果蝇,是世界公认的重要农业害虫。铃木D.suzukii是一种软皮水果害虫,因为雌性可以在收获前在成熟的水果中产卵。虽然已经制备出了用于suzukii遗传生物控制的菌株,但转基因suzukiii菌株的开发及其进一步筛选仍然是一个挑战,部分原因是缺乏表型可追踪的遗传标记,例如那些广泛用于模式遗传生物黑腹果蝇的遗传标记。在这里,我们使用CRISPR/Cas9在眼睛颜色基因白色、朱砂色和深褐色中引入了可遗传的突变,这些基因分别位于X、第二和第三染色体上。获得了单一突变的纯合菌株。已建立菌株的基因分型显示在靶位点的插入和/或缺失(indel)。朱砂和棕褐色突变的纯合菌株在羽化时显示出淡黄色的眼睛颜色,但一周后变暗为棕褐色。一些朱砂和棕褐色品系的繁殖力和繁殖力与野生型相当。尽管以前有报道称白色突变雄性不育,但我们发现不育并没有完全渗透,我们已经能够将白眼菌株维持一年多。本研究中开发的朱砂、棕褐色和白色突变菌株应有助于suzukii未来的遗传研究和开发用于该害虫遗传控制的菌株。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Expansion of the genetic toolbox for manipulation of the global crop pest Drosophila suzukii: Isolation and assessment of eye colour mutant strains

Expansion of the genetic toolbox for manipulation of the global crop pest Drosophila suzukii: Isolation and assessment of eye colour mutant strains

Expansion of the genetic toolbox for manipulation of the global crop pest Drosophila suzukii: Isolation and assessment of eye colour mutant strains

Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), commonly called spotted wing Drosophila, is an important agricultural pest recognised worldwide. D. suzukii is a pest of soft-skinned fruits as females can lay eggs in ripening fruit before harvest. While strains for genetic biocontrol of D. suzukii have been made, the development of transgenic D. suzukii strains and their further screening remain a challenge partly due to the lack of phenotypically trackable genetic-markers, such as those widely used with the model genetic organism D. melanogaster. Here, we have used CRISPR/Cas9 to introduce heritable mutations in the eye colour genes white, cinnabar and sepia, which are located on the X, second and third chromosomes, respectively. Strains were obtained, which were homozygous for a single mutation. Genotyping of the established strains showed insertion and/or deletions (indels) at the targeted sites. A strain homozygous for mutations in cinnabar and sepia showed a pale-yellow eye colour at eclosion but darkened to a sepia colour after a week. The fecundity and fertility of some of the cinnabar and sepia strains were comparable with the wild type. Although white mutant males were previously reported to be sterile, we found that sterility is not fully penetrant and we have been able to maintain white-eyed strains for over a year. The cinnabar, sepia and white mutant strains developed in this study should facilitate future genetic studies in D. suzukii and the development of strains for genetic control of this pest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insect Molecular Biology
Insect Molecular Biology 生物-昆虫学
CiteScore
4.80
自引率
3.80%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins. This includes research related to: • insect gene structure • control of gene expression • localisation and function/activity of proteins • interactions of proteins and ligands/substrates • effect of mutations on gene/protein function • evolution of insect genes/genomes, especially where principles relevant to insects in general are established • molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations • gene mapping using molecular tools • molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信