{"title":"用于法医目的的快速DNA技术在亲属关系分析中的成功率。","authors":"Tuğba Ünsal Sapan, Nasibe Yağmur Kartal, Şebnem Meherremli, Merve Erdem Obut, Kaan Yilancioğlu, Sevil Atasoy","doi":"10.1007/s12024-023-00735-x","DOIUrl":null,"url":null,"abstract":"<p><p>Reducing the time required for DNA analysis in forensic genetics can yield significant benefits, both in determining genealogical relationships for legal proceedings and in criminal cases. Swift identification of individuals plays a pivotal role in solving crimes and apprehending perpetrators. Additionally, in situations like mass disasters, prompt victim identification holds utmost importance. The Rapid DNA technology, introduced in 2012 to expedite DNA analysis, has evolved to streamline the process into a single step. This advancement not only minimizes the risk of human error and contamination, but also boasts a remarkable time advantage, delivering results in as little as 90 min. In this study, DNA profiles of 30 families (consisting of mothers, fathers, and children) were analyzed using the RapidHITTM ID System. The system automatically calculated maternity-paternity probabilities to assess the suitability of Rapid DNA technology for kinship analysis. For validation, DNA profiles were also generated using the 3500 GA method. The study revealed that 9 out of 30 families exhibited discrepancies in DNA profiling, leading to inaccuracies in automatic kinship analysis. Consequently, while the method offers rapid and user-friendly advantages for forensic sciences, the software underlying the system requires re-evaluation. Issues such as maternal-paternal exclusion in kinship analyses, arising from challenges like un-called alleles, warrant further attention.</p>","PeriodicalId":12449,"journal":{"name":"Forensic Science, Medicine and Pathology","volume":" ","pages":"793-800"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Success rate of rapid DNA technology in kinship analysis for forensic purpose.\",\"authors\":\"Tuğba Ünsal Sapan, Nasibe Yağmur Kartal, Şebnem Meherremli, Merve Erdem Obut, Kaan Yilancioğlu, Sevil Atasoy\",\"doi\":\"10.1007/s12024-023-00735-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reducing the time required for DNA analysis in forensic genetics can yield significant benefits, both in determining genealogical relationships for legal proceedings and in criminal cases. Swift identification of individuals plays a pivotal role in solving crimes and apprehending perpetrators. Additionally, in situations like mass disasters, prompt victim identification holds utmost importance. The Rapid DNA technology, introduced in 2012 to expedite DNA analysis, has evolved to streamline the process into a single step. This advancement not only minimizes the risk of human error and contamination, but also boasts a remarkable time advantage, delivering results in as little as 90 min. In this study, DNA profiles of 30 families (consisting of mothers, fathers, and children) were analyzed using the RapidHITTM ID System. The system automatically calculated maternity-paternity probabilities to assess the suitability of Rapid DNA technology for kinship analysis. For validation, DNA profiles were also generated using the 3500 GA method. The study revealed that 9 out of 30 families exhibited discrepancies in DNA profiling, leading to inaccuracies in automatic kinship analysis. Consequently, while the method offers rapid and user-friendly advantages for forensic sciences, the software underlying the system requires re-evaluation. Issues such as maternal-paternal exclusion in kinship analyses, arising from challenges like un-called alleles, warrant further attention.</p>\",\"PeriodicalId\":12449,\"journal\":{\"name\":\"Forensic Science, Medicine and Pathology\",\"volume\":\" \",\"pages\":\"793-800\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science, Medicine and Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12024-023-00735-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science, Medicine and Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12024-023-00735-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
Success rate of rapid DNA technology in kinship analysis for forensic purpose.
Reducing the time required for DNA analysis in forensic genetics can yield significant benefits, both in determining genealogical relationships for legal proceedings and in criminal cases. Swift identification of individuals plays a pivotal role in solving crimes and apprehending perpetrators. Additionally, in situations like mass disasters, prompt victim identification holds utmost importance. The Rapid DNA technology, introduced in 2012 to expedite DNA analysis, has evolved to streamline the process into a single step. This advancement not only minimizes the risk of human error and contamination, but also boasts a remarkable time advantage, delivering results in as little as 90 min. In this study, DNA profiles of 30 families (consisting of mothers, fathers, and children) were analyzed using the RapidHITTM ID System. The system automatically calculated maternity-paternity probabilities to assess the suitability of Rapid DNA technology for kinship analysis. For validation, DNA profiles were also generated using the 3500 GA method. The study revealed that 9 out of 30 families exhibited discrepancies in DNA profiling, leading to inaccuracies in automatic kinship analysis. Consequently, while the method offers rapid and user-friendly advantages for forensic sciences, the software underlying the system requires re-evaluation. Issues such as maternal-paternal exclusion in kinship analyses, arising from challenges like un-called alleles, warrant further attention.
期刊介绍:
Forensic Science, Medicine and Pathology encompasses all aspects of modern day forensics, equally applying to children or adults, either living or the deceased. This includes forensic science, medicine, nursing, and pathology, as well as toxicology, human identification, mass disasters/mass war graves, profiling, imaging, policing, wound assessment, sexual assault, anthropology, archeology, forensic search, entomology, botany, biology, veterinary pathology, and DNA. Forensic Science, Medicine, and Pathology presents a balance of forensic research and reviews from around the world to reflect modern advances through peer-reviewed papers, short communications, meeting proceedings and case reports.