{"title":"顶体蛋白酶活性低与Spam1/顶体蛋白酶表达降低和GSH缺乏导致人类精子细胞顶体过早释放有关。","authors":"Mengyuan Lin, Pengyun Ling, Qingwen He, Daozhen Chen, Lianshuai Zheng, Lisha Tang, Shi-Wen Jiang","doi":"10.1007/s00441-023-03826-x","DOIUrl":null,"url":null,"abstract":"<p><p>Low acrosin activity (LAA) is associated with sperm function anomaly and poor outcomes of in vitro fertilization. In this study, we confirm that 993 semen samples with LAA had a reduced sperm motility and low in vitro fertilization rate in comparison with 1332 normal controls (NC). Proteomic comparison between 11 LAA and 11 NC sperm samples identified 35 upregulated and 99 downregulated proteins in the LAA group. Indeed, proteomic data showed that acrosome enzymes Spam1 and Acrosin were among the downregulated proteins in the LAA group, which was validated by quantitative PCR and immunefluorescent staining of sperm cells. The KEEG pathway analysis revealed a deficiency of GSH and Gln biosynthesis in LAA sperm cells. Immunofluorescent staining of sperms and quantitative PCR verified downregulation of GLUL and GCLC, the key enzymes for GSH and Gln biosynthesis. Moreover, the results of ELISA assay confirmed low levels of GSH and Gln in LAA sperm cells. Mechanistic studies showed that addition of 10 mM H<sub>2</sub>O<sub>2</sub> to semen samples led to a significant reduction of acrosin activity and sperm motility, most possibly by triggering premature acrosome release. In contrast, the presence of 20 mM GSH blocked the oxidative effects of H<sub>2</sub>O<sub>2</sub>. Since GSH counteracts the oxidative stress and Gln participates in TCA cycling, their deficiency may affect the redox balance as well as energy production of sperm cells. These findings shed new light on the pathological mechanisms of infertility associated with LAA. Male infertility patients could benefit from GSH supplement by improvement of acrosin activity and other sperm functions.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"529-545"},"PeriodicalIF":3.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low acrosin activity is associated with decreased Spam1/acrosin expression and GSH deficiency-caused premature acrosome release of human sperm cells.\",\"authors\":\"Mengyuan Lin, Pengyun Ling, Qingwen He, Daozhen Chen, Lianshuai Zheng, Lisha Tang, Shi-Wen Jiang\",\"doi\":\"10.1007/s00441-023-03826-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Low acrosin activity (LAA) is associated with sperm function anomaly and poor outcomes of in vitro fertilization. In this study, we confirm that 993 semen samples with LAA had a reduced sperm motility and low in vitro fertilization rate in comparison with 1332 normal controls (NC). Proteomic comparison between 11 LAA and 11 NC sperm samples identified 35 upregulated and 99 downregulated proteins in the LAA group. Indeed, proteomic data showed that acrosome enzymes Spam1 and Acrosin were among the downregulated proteins in the LAA group, which was validated by quantitative PCR and immunefluorescent staining of sperm cells. The KEEG pathway analysis revealed a deficiency of GSH and Gln biosynthesis in LAA sperm cells. Immunofluorescent staining of sperms and quantitative PCR verified downregulation of GLUL and GCLC, the key enzymes for GSH and Gln biosynthesis. Moreover, the results of ELISA assay confirmed low levels of GSH and Gln in LAA sperm cells. Mechanistic studies showed that addition of 10 mM H<sub>2</sub>O<sub>2</sub> to semen samples led to a significant reduction of acrosin activity and sperm motility, most possibly by triggering premature acrosome release. In contrast, the presence of 20 mM GSH blocked the oxidative effects of H<sub>2</sub>O<sub>2</sub>. Since GSH counteracts the oxidative stress and Gln participates in TCA cycling, their deficiency may affect the redox balance as well as energy production of sperm cells. These findings shed new light on the pathological mechanisms of infertility associated with LAA. Male infertility patients could benefit from GSH supplement by improvement of acrosin activity and other sperm functions.</p>\",\"PeriodicalId\":9712,\"journal\":{\"name\":\"Cell and Tissue Research\",\"volume\":\" \",\"pages\":\"529-545\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Tissue Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00441-023-03826-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-023-03826-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Low acrosin activity is associated with decreased Spam1/acrosin expression and GSH deficiency-caused premature acrosome release of human sperm cells.
Low acrosin activity (LAA) is associated with sperm function anomaly and poor outcomes of in vitro fertilization. In this study, we confirm that 993 semen samples with LAA had a reduced sperm motility and low in vitro fertilization rate in comparison with 1332 normal controls (NC). Proteomic comparison between 11 LAA and 11 NC sperm samples identified 35 upregulated and 99 downregulated proteins in the LAA group. Indeed, proteomic data showed that acrosome enzymes Spam1 and Acrosin were among the downregulated proteins in the LAA group, which was validated by quantitative PCR and immunefluorescent staining of sperm cells. The KEEG pathway analysis revealed a deficiency of GSH and Gln biosynthesis in LAA sperm cells. Immunofluorescent staining of sperms and quantitative PCR verified downregulation of GLUL and GCLC, the key enzymes for GSH and Gln biosynthesis. Moreover, the results of ELISA assay confirmed low levels of GSH and Gln in LAA sperm cells. Mechanistic studies showed that addition of 10 mM H2O2 to semen samples led to a significant reduction of acrosin activity and sperm motility, most possibly by triggering premature acrosome release. In contrast, the presence of 20 mM GSH blocked the oxidative effects of H2O2. Since GSH counteracts the oxidative stress and Gln participates in TCA cycling, their deficiency may affect the redox balance as well as energy production of sperm cells. These findings shed new light on the pathological mechanisms of infertility associated with LAA. Male infertility patients could benefit from GSH supplement by improvement of acrosin activity and other sperm functions.
期刊介绍:
The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include:
- neurobiology
- neuroendocrinology
- endocrinology
- reproductive biology
- skeletal and immune systems
- development
- stem cells
- muscle biology.