弓形虫应激颗粒的高分辨率质谱蛋白质组学图谱。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2024-01-01 Epub Date: 2023-10-12 DOI:10.1139/cjm-2023-0091
Scott Roscoe, Yue Guo, Panayiotis O Vacratsis, Sirinart Ananvoranich
{"title":"弓形虫应激颗粒的高分辨率质谱蛋白质组学图谱。","authors":"Scott Roscoe, Yue Guo, Panayiotis O Vacratsis, Sirinart Ananvoranich","doi":"10.1139/cjm-2023-0091","DOIUrl":null,"url":null,"abstract":"<p><p>Ribonucleoprotein granules are bio-condensates that form a diverse group of dynamic membrane-less organelles implicated in several cellular functions, including stress response and cellular survival. In <i>Toxoplasma gondii</i>, a type of bio-condensates referred to as stress granules (SGs) are formed prior to the parasites' egress from the host cell and are implicated in the survival and invasion competency of extracellular tachyzoites. We used paraformaldehyde to fix and cross-link SG proteins to allow purification by centrifugation and analysis by mass spectrometry. We profiled protein components of SGs at 10 and 30 min post-egress when parasite's invasion ability is significantly diminished. Thirty-three proteins were identified from 10 min SGs, and additional 43 proteins were identified from 30 min SGs. Notably, common SG components such as proteins with intrinsically disordered domains were not identified. Gene ontology analysis of both 10 and 30 min SGs shows that overall molecular functions of SGs' proteins are ATP-binding, GTP-binding, and GTPase activity. Discernable differences between 10 and 30 min SGs are in the proportions of translation and microtubule-related proteins. Ten-minute SGs have a higher proportion of microtubule-related proteins and a lower proportion of ribosome-related proteins, while a reverse correlation was identified for those of 30 min. It remains to be investigated whether this reverse correlation contributes to the ability of extracellular tachyzoites to reinvade host cells.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteomic profile of <i>Toxoplasma</i> <i>gondii</i> stress granules by high-resolution mass spectrometry.\",\"authors\":\"Scott Roscoe, Yue Guo, Panayiotis O Vacratsis, Sirinart Ananvoranich\",\"doi\":\"10.1139/cjm-2023-0091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ribonucleoprotein granules are bio-condensates that form a diverse group of dynamic membrane-less organelles implicated in several cellular functions, including stress response and cellular survival. In <i>Toxoplasma gondii</i>, a type of bio-condensates referred to as stress granules (SGs) are formed prior to the parasites' egress from the host cell and are implicated in the survival and invasion competency of extracellular tachyzoites. We used paraformaldehyde to fix and cross-link SG proteins to allow purification by centrifugation and analysis by mass spectrometry. We profiled protein components of SGs at 10 and 30 min post-egress when parasite's invasion ability is significantly diminished. Thirty-three proteins were identified from 10 min SGs, and additional 43 proteins were identified from 30 min SGs. Notably, common SG components such as proteins with intrinsically disordered domains were not identified. Gene ontology analysis of both 10 and 30 min SGs shows that overall molecular functions of SGs' proteins are ATP-binding, GTP-binding, and GTPase activity. Discernable differences between 10 and 30 min SGs are in the proportions of translation and microtubule-related proteins. Ten-minute SGs have a higher proportion of microtubule-related proteins and a lower proportion of ribosome-related proteins, while a reverse correlation was identified for those of 30 min. It remains to be investigated whether this reverse correlation contributes to the ability of extracellular tachyzoites to reinvade host cells.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/cjm-2023-0091\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2023-0091","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

核糖核蛋白颗粒是一种生物凝聚物,它形成了一组不同的动态无膜细胞器,涉及多种细胞功能,包括应激反应和细胞存活。在弓形虫中,一种被称为应激颗粒(SG)的生物凝聚物是在寄生虫离开宿主细胞之前形成的,与细胞外速殖子的生存和入侵能力有关。我们使用多聚甲醛固定和交联SG蛋白,以便通过离心纯化和质谱分析。当寄生虫的入侵能力显著降低时,我们在离开后10分钟和30分钟对SG的蛋白质组分进行了分析。从10分钟的SGs中鉴定出33种蛋白质,从30分钟的SG中鉴定出另外43种蛋白质。值得注意的是,没有鉴定出常见的SG成分,如具有内在无序结构域的蛋白质。对10分钟和30分钟SGs的基因本体论分析表明,SGs蛋白的总体分子功能是ATP结合、GTP结合和GTPase活性。10分钟和30分钟SGs之间明显的差异在于翻译和微管相关蛋白的比例。10分钟的SG具有较高比例的微管相关蛋白和较低比例的核糖体相关蛋白,而30分钟的SG则存在反向相关性。这种反向相关性是否有助于细胞外速殖子重新侵入宿主细胞,还有待研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proteomic profile of Toxoplasma gondii stress granules by high-resolution mass spectrometry.

Ribonucleoprotein granules are bio-condensates that form a diverse group of dynamic membrane-less organelles implicated in several cellular functions, including stress response and cellular survival. In Toxoplasma gondii, a type of bio-condensates referred to as stress granules (SGs) are formed prior to the parasites' egress from the host cell and are implicated in the survival and invasion competency of extracellular tachyzoites. We used paraformaldehyde to fix and cross-link SG proteins to allow purification by centrifugation and analysis by mass spectrometry. We profiled protein components of SGs at 10 and 30 min post-egress when parasite's invasion ability is significantly diminished. Thirty-three proteins were identified from 10 min SGs, and additional 43 proteins were identified from 30 min SGs. Notably, common SG components such as proteins with intrinsically disordered domains were not identified. Gene ontology analysis of both 10 and 30 min SGs shows that overall molecular functions of SGs' proteins are ATP-binding, GTP-binding, and GTPase activity. Discernable differences between 10 and 30 min SGs are in the proportions of translation and microtubule-related proteins. Ten-minute SGs have a higher proportion of microtubule-related proteins and a lower proportion of ribosome-related proteins, while a reverse correlation was identified for those of 30 min. It remains to be investigated whether this reverse correlation contributes to the ability of extracellular tachyzoites to reinvade host cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信