类火星大气中碳酸盐岩中细菌生长的远程激光诱导击穿光谱。

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Astrobiology Pub Date : 2023-11-01 Epub Date: 2023-10-11 DOI:10.1089/ast.2022.0153
Laura García-Gómez, Tomás Delgado, Francisco J Fortes, Yolanda Del Rosal, Cristina Liñán, Luis Efrén Fernández, Luisa M Cabalín, Javier Laserna
{"title":"类火星大气中碳酸盐岩中细菌生长的远程激光诱导击穿光谱。","authors":"Laura García-Gómez, Tomás Delgado, Francisco J Fortes, Yolanda Del Rosal, Cristina Liñán, Luis Efrén Fernández, Luisa M Cabalín, Javier Laserna","doi":"10.1089/ast.2022.0153","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the past habitable environments of Mars increases the requirement to recognize and examine modern analogs and to evaluate the mechanisms that may preserve biosignatures in them. The phenomenon that originates and preserves possible microbial biosignatures in mineral phases is of particular interest in astrobiology. On Earth, the precipitation of carbonate matrices can be mediated by bacteria. Besides microbialites and other sedimentary structures, carbonate formations can be observed in certain karstic caves. The present work is focused on the remote laser-induced breakdown spectroscopy (LIBS) characterization of cyanobacteria, exploring the possibilities for identification and discrimination on carbonate substrates. For this purpose, the extremophile cyanobacterium <i>Chroococcidiopsis</i> sp. (collected from the Nerja Cave, Malaga, Spain) was analyzed under laboratory-simulated martian conditions in terms of chemical composition and gas pressure. LIBS results related to acquired molecular emission features allowed bacterial differentiation from the colonized mineral substrate. In addition, the limits of detection were estimated with a laboratory-grown culture of the cyanobacterium <i>Microcystis aureginosa</i>. Our results reveal LIBS's capability to detect biological traces under simulated martian conditions. Additionally, the time-resolved analysis of the biological samples demonstrates the selection of optimal temporal conditions as a critical parameter for the preferential acquisition of molecular species in organic material.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"1179-1188"},"PeriodicalIF":3.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote Laser-Induced Breakdown Spectroscopy of Bacterial Growths in Carbonate Rocks in a Mars-like Atmosphere.\",\"authors\":\"Laura García-Gómez, Tomás Delgado, Francisco J Fortes, Yolanda Del Rosal, Cristina Liñán, Luis Efrén Fernández, Luisa M Cabalín, Javier Laserna\",\"doi\":\"10.1089/ast.2022.0153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the past habitable environments of Mars increases the requirement to recognize and examine modern analogs and to evaluate the mechanisms that may preserve biosignatures in them. The phenomenon that originates and preserves possible microbial biosignatures in mineral phases is of particular interest in astrobiology. On Earth, the precipitation of carbonate matrices can be mediated by bacteria. Besides microbialites and other sedimentary structures, carbonate formations can be observed in certain karstic caves. The present work is focused on the remote laser-induced breakdown spectroscopy (LIBS) characterization of cyanobacteria, exploring the possibilities for identification and discrimination on carbonate substrates. For this purpose, the extremophile cyanobacterium <i>Chroococcidiopsis</i> sp. (collected from the Nerja Cave, Malaga, Spain) was analyzed under laboratory-simulated martian conditions in terms of chemical composition and gas pressure. LIBS results related to acquired molecular emission features allowed bacterial differentiation from the colonized mineral substrate. In addition, the limits of detection were estimated with a laboratory-grown culture of the cyanobacterium <i>Microcystis aureginosa</i>. Our results reveal LIBS's capability to detect biological traces under simulated martian conditions. Additionally, the time-resolved analysis of the biological samples demonstrates the selection of optimal temporal conditions as a critical parameter for the preferential acquisition of molecular species in organic material.</p>\",\"PeriodicalId\":8645,\"journal\":{\"name\":\"Astrobiology\",\"volume\":\" \",\"pages\":\"1179-1188\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1089/ast.2022.0153\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2022.0153","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

了解火星过去的宜居环境增加了识别和检查现代类似物以及评估可能保存其中生物特征的机制的要求。在矿物相中产生并保存可能的微生物生物特征的现象在天体生物学中特别令人感兴趣。在地球上,碳酸盐基质的沉淀可以由细菌介导。除了微生物岩和其他沉积结构外,在某些岩溶洞穴中还可以观察到碳酸盐岩地层。目前的工作集中在蓝藻的远程激光诱导击穿光谱(LIBS)表征上,探索在碳酸盐基质上识别和鉴别的可能性。为此,在实验室模拟的火星条件下,对极端微生物蓝细菌Chroocccidiopsis sp.(从西班牙马拉加Nerja洞穴采集)的化学成分和气压进行了分析。与获得的分子发射特征相关的LIBS结果允许细菌从定殖的矿物基质分化。此外,通过实验室培养的金色微囊藻来估计检测极限。我们的结果揭示了LIBS在模拟火星条件下探测生物痕迹的能力。此外,生物样品的时间分辨分析表明,选择最佳时间条件是优先获取有机材料中分子物种的关键参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remote Laser-Induced Breakdown Spectroscopy of Bacterial Growths in Carbonate Rocks in a Mars-like Atmosphere.

Understanding the past habitable environments of Mars increases the requirement to recognize and examine modern analogs and to evaluate the mechanisms that may preserve biosignatures in them. The phenomenon that originates and preserves possible microbial biosignatures in mineral phases is of particular interest in astrobiology. On Earth, the precipitation of carbonate matrices can be mediated by bacteria. Besides microbialites and other sedimentary structures, carbonate formations can be observed in certain karstic caves. The present work is focused on the remote laser-induced breakdown spectroscopy (LIBS) characterization of cyanobacteria, exploring the possibilities for identification and discrimination on carbonate substrates. For this purpose, the extremophile cyanobacterium Chroococcidiopsis sp. (collected from the Nerja Cave, Malaga, Spain) was analyzed under laboratory-simulated martian conditions in terms of chemical composition and gas pressure. LIBS results related to acquired molecular emission features allowed bacterial differentiation from the colonized mineral substrate. In addition, the limits of detection were estimated with a laboratory-grown culture of the cyanobacterium Microcystis aureginosa. Our results reveal LIBS's capability to detect biological traces under simulated martian conditions. Additionally, the time-resolved analysis of the biological samples demonstrates the selection of optimal temporal conditions as a critical parameter for the preferential acquisition of molecular species in organic material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信