季铵化合物的食物和胆汁胶束结合。

IF 3.4 Q2 CHEMISTRY, MEDICINAL
ADMET and DMPK Pub Date : 2023-09-15 eCollection Date: 2023-01-01 DOI:10.5599/admet.2023
Takeru Sumiji, Kiyohiko Sugano
{"title":"季铵化合物的食物和胆汁胶束结合。","authors":"Takeru Sumiji,&nbsp;Kiyohiko Sugano","doi":"10.5599/admet.2023","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Physiologically-based biopharmaceutics modeling (PBBM) has been widely used to predict the oral absorption of drugs. However, the prediction of food effects on oral drug absorption is still challenging, especially for negative food effects. Marked negative food effects have been reported in most cases of quaternary ammonium compounds (QAC). However, the mechanism has remained unclear. The purpose of the present study was to investigate the bile micelle and food binding of QACs as a mechanism of the negative food effect.</p><p><strong>Experimental approach: </strong>Trospium (TRS), propantheline (PPT), and ambenonium (AMB) were selected as model QAC drugs. The oral absorption of these QACs has been reported to be reduced by 77% (TRS), > 66% (PPT), and 79% (AMB), when taken with food. The fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF, containing 3 and 15 mM taurocholic acid, respectively) with or without FDA breakfast homogenate (BFH) were used as the simulated intestinal fluid. The unbound fraction (f<sub>u</sub>) of the QACs in these media was measured by dynamic dialysis.</p><p><strong>Key results: </strong>The f<sub>u</sub> ratios (FeSSIF/ FaSSIF) were 0.67 (TRS), 0.47 (PPT), and 0.76 (AMB). When BFH was added to FeSSIF, it was reduced to 0.39 (TRS), 0.28 (PPT), and 0.59 (AMB).</p><p><strong>Conclusion: </strong>These results suggested that bile micelle and food binding play an important role in the negative food effect on the oral absorption of QACs.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567067/pdf/","citationCount":"0","resultStr":"{\"title\":\"Food and bile micelle binding of quaternary ammonium compounds.\",\"authors\":\"Takeru Sumiji,&nbsp;Kiyohiko Sugano\",\"doi\":\"10.5599/admet.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong>Physiologically-based biopharmaceutics modeling (PBBM) has been widely used to predict the oral absorption of drugs. However, the prediction of food effects on oral drug absorption is still challenging, especially for negative food effects. Marked negative food effects have been reported in most cases of quaternary ammonium compounds (QAC). However, the mechanism has remained unclear. The purpose of the present study was to investigate the bile micelle and food binding of QACs as a mechanism of the negative food effect.</p><p><strong>Experimental approach: </strong>Trospium (TRS), propantheline (PPT), and ambenonium (AMB) were selected as model QAC drugs. The oral absorption of these QACs has been reported to be reduced by 77% (TRS), > 66% (PPT), and 79% (AMB), when taken with food. The fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF, containing 3 and 15 mM taurocholic acid, respectively) with or without FDA breakfast homogenate (BFH) were used as the simulated intestinal fluid. The unbound fraction (f<sub>u</sub>) of the QACs in these media was measured by dynamic dialysis.</p><p><strong>Key results: </strong>The f<sub>u</sub> ratios (FeSSIF/ FaSSIF) were 0.67 (TRS), 0.47 (PPT), and 0.76 (AMB). When BFH was added to FeSSIF, it was reduced to 0.39 (TRS), 0.28 (PPT), and 0.59 (AMB).</p><p><strong>Conclusion: </strong>These results suggested that bile micelle and food binding play an important role in the negative food effect on the oral absorption of QACs.</p>\",\"PeriodicalId\":7259,\"journal\":{\"name\":\"ADMET and DMPK\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567067/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ADMET and DMPK\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5599/admet.2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADMET and DMPK","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/admet.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:基于生理学的生物制药建模(PBBM)已被广泛用于预测药物的口服吸收。然而,预测食物对口服药物吸收的影响仍然具有挑战性,尤其是对于负面的食物影响。在大多数季铵化合物(QAC)的情况下,已经报道了显著的负面食物影响。然而,该机制仍不明确。本研究的目的是研究胆汁胶束和QACs的食物结合作为负食物效应的机制。实验方法:选择曲司平(TRS)、丙肾上腺素(PPT)和安必宁(AMB)为模型QAC药物。据报道,当与食物一起服用时,这些QAC的口服吸收减少了77%(TRS)、>66%(PPT)和79%(AMB)。使用禁食和喂食状态的模拟肠液(分别含有3和15mM牛磺胆酸的FaSSIF和FeSSIF)作为模拟肠液,其中含有或不含有FDA早餐匀浆(BFH)。通过动态透析测量这些培养基中的QACs的未结合部分(fu)。关键结果:fu比值(FeSSIF/FaSSIF)分别为0.67(TRS)、0.47(PPT)和0.76(AMB)。在FeSSIF中加入BFH后,其含量分别降至0.39(TRS)、0.28(PPT)和0.59(AMB)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Food and bile micelle binding of quaternary ammonium compounds.

Food and bile micelle binding of quaternary ammonium compounds.

Food and bile micelle binding of quaternary ammonium compounds.

Food and bile micelle binding of quaternary ammonium compounds.

Background and purpose: Physiologically-based biopharmaceutics modeling (PBBM) has been widely used to predict the oral absorption of drugs. However, the prediction of food effects on oral drug absorption is still challenging, especially for negative food effects. Marked negative food effects have been reported in most cases of quaternary ammonium compounds (QAC). However, the mechanism has remained unclear. The purpose of the present study was to investigate the bile micelle and food binding of QACs as a mechanism of the negative food effect.

Experimental approach: Trospium (TRS), propantheline (PPT), and ambenonium (AMB) were selected as model QAC drugs. The oral absorption of these QACs has been reported to be reduced by 77% (TRS), > 66% (PPT), and 79% (AMB), when taken with food. The fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF, containing 3 and 15 mM taurocholic acid, respectively) with or without FDA breakfast homogenate (BFH) were used as the simulated intestinal fluid. The unbound fraction (fu) of the QACs in these media was measured by dynamic dialysis.

Key results: The fu ratios (FeSSIF/ FaSSIF) were 0.67 (TRS), 0.47 (PPT), and 0.76 (AMB). When BFH was added to FeSSIF, it was reduced to 0.39 (TRS), 0.28 (PPT), and 0.59 (AMB).

Conclusion: These results suggested that bile micelle and food binding play an important role in the negative food effect on the oral absorption of QACs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ADMET and DMPK
ADMET and DMPK Multiple-
CiteScore
4.40
自引率
0.00%
发文量
22
审稿时长
4 weeks
期刊介绍: ADMET and DMPK is an open access journal devoted to the rapid dissemination of new and original scientific results in all areas of absorption, distribution, metabolism, excretion, toxicology and pharmacokinetics of drugs. ADMET and DMPK publishes the following types of contributions: - Original research papers - Feature articles - Review articles - Short communications and Notes - Letters to Editors - Book reviews The scope of the Journal involves, but is not limited to, the following areas: - physico-chemical properties of drugs and methods of their determination - drug permeabilities - drug absorption - drug-drug, drug-protein, drug-membrane and drug-DNA interactions - chemical stability and degradations of drugs - instrumental methods in ADMET - drug metablic processes - routes of administration and excretion of drug - pharmacokinetic/pharmacodynamic study - quantitative structure activity/property relationship - ADME/PK modelling - Toxicology screening - Transporter identification and study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信