Bing Bao , Xiao-Ping Yin , Xiao-Qing Wen , Yi-Jun Suo , Zhi-Ying Chen , Dong -Ling Li , Qin Lai , Xian-Ming Cao , Qiu-Min Qu
{"title":"在实验性脑出血中,EGCG的保护作用与HO-1活性和小胶质细胞焦下垂抑制有关。","authors":"Bing Bao , Xiao-Ping Yin , Xiao-Qing Wen , Yi-Jun Suo , Zhi-Ying Chen , Dong -Ling Li , Qin Lai , Xian-Ming Cao , Qiu-Min Qu","doi":"10.1016/j.neuint.2023.105603","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Intracerebral hemorrhage (ICH), which has high mortality and disability rate is associated with microglial </span>pyroptosis and </span>neuroinflammation, and the effective treatment methods are limited Epigallocatechin-3-gallate (EGCG) has been found to play a cytoprotective role by regulating the anti-inflammatory response to pyroptosis in other </span>systemic diseases<span><span>. However, the role of EGCG in microglial pyroptosis and neuroinflammation after ICH remains unclear. In this study, we investigated the effects of EGCG pretreatment on neuroinflammation-mediated neuronal pyroptosis and the underlying </span>neuroprotective<span><span> mechanisms in experimental ICH. EGCG pretreatment was found to remarkably improved neurobehavioral performance, and decreased the hematoma<span> volume and cerebral edema in mice. We found that EGCG pretreatment attenuated the release of hemin-induced </span></span>inflammatory cytokines<span> (IL-1β, IL-18, and TNF-α). EGCG significantly upregulated the expression of heme oxygenase-1 (HO-1), and downregulated the levels of pyroptotic molecules and inflammatory cytokines including Caspase-1, GSDMD, NLRP3<span>, mature IL-1β, and IL-18. EGCG pretreatment also decreased the number of Caspase-1-positive microglia and GSDMD along with NLRP3-positive microglia after ICH. Conversely, an HO-1-specific inhibitor (ZnPP), significantly inhibited the anti-pyroptosis and anti-neuroinflammation effects of EGCG. Therefore, EGCG pretreatment alleviated microglial pyroptosis and neuroinflammation, at least in part through the Caspase-1/GSDMD/NLRP3 pathway by upregulating HO-1 expression after ICH. In addition, EGCG pretreatment promoted the polarization of microglia from the M1 phenotype to M2 phenotype after ICH. The results suggest that EGCG is a potential agent to attenuate neuroinflammation via its anti-pyroptosis effect after ICH.</span></span></span></span></p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"170 ","pages":"Article 105603"},"PeriodicalIF":4.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The protective effects of EGCG was associated with HO-1 active and microglia pyroptosis inhibition in experimental intracerebral hemorrhage\",\"authors\":\"Bing Bao , Xiao-Ping Yin , Xiao-Qing Wen , Yi-Jun Suo , Zhi-Ying Chen , Dong -Ling Li , Qin Lai , Xian-Ming Cao , Qiu-Min Qu\",\"doi\":\"10.1016/j.neuint.2023.105603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Intracerebral hemorrhage (ICH), which has high mortality and disability rate is associated with microglial </span>pyroptosis and </span>neuroinflammation, and the effective treatment methods are limited Epigallocatechin-3-gallate (EGCG) has been found to play a cytoprotective role by regulating the anti-inflammatory response to pyroptosis in other </span>systemic diseases<span><span>. However, the role of EGCG in microglial pyroptosis and neuroinflammation after ICH remains unclear. In this study, we investigated the effects of EGCG pretreatment on neuroinflammation-mediated neuronal pyroptosis and the underlying </span>neuroprotective<span><span> mechanisms in experimental ICH. EGCG pretreatment was found to remarkably improved neurobehavioral performance, and decreased the hematoma<span> volume and cerebral edema in mice. We found that EGCG pretreatment attenuated the release of hemin-induced </span></span>inflammatory cytokines<span> (IL-1β, IL-18, and TNF-α). EGCG significantly upregulated the expression of heme oxygenase-1 (HO-1), and downregulated the levels of pyroptotic molecules and inflammatory cytokines including Caspase-1, GSDMD, NLRP3<span>, mature IL-1β, and IL-18. EGCG pretreatment also decreased the number of Caspase-1-positive microglia and GSDMD along with NLRP3-positive microglia after ICH. Conversely, an HO-1-specific inhibitor (ZnPP), significantly inhibited the anti-pyroptosis and anti-neuroinflammation effects of EGCG. Therefore, EGCG pretreatment alleviated microglial pyroptosis and neuroinflammation, at least in part through the Caspase-1/GSDMD/NLRP3 pathway by upregulating HO-1 expression after ICH. In addition, EGCG pretreatment promoted the polarization of microglia from the M1 phenotype to M2 phenotype after ICH. The results suggest that EGCG is a potential agent to attenuate neuroinflammation via its anti-pyroptosis effect after ICH.</span></span></span></span></p></div>\",\"PeriodicalId\":398,\"journal\":{\"name\":\"Neurochemistry international\",\"volume\":\"170 \",\"pages\":\"Article 105603\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemistry international\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0197018623001316\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197018623001316","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The protective effects of EGCG was associated with HO-1 active and microglia pyroptosis inhibition in experimental intracerebral hemorrhage
Intracerebral hemorrhage (ICH), which has high mortality and disability rate is associated with microglial pyroptosis and neuroinflammation, and the effective treatment methods are limited Epigallocatechin-3-gallate (EGCG) has been found to play a cytoprotective role by regulating the anti-inflammatory response to pyroptosis in other systemic diseases. However, the role of EGCG in microglial pyroptosis and neuroinflammation after ICH remains unclear. In this study, we investigated the effects of EGCG pretreatment on neuroinflammation-mediated neuronal pyroptosis and the underlying neuroprotective mechanisms in experimental ICH. EGCG pretreatment was found to remarkably improved neurobehavioral performance, and decreased the hematoma volume and cerebral edema in mice. We found that EGCG pretreatment attenuated the release of hemin-induced inflammatory cytokines (IL-1β, IL-18, and TNF-α). EGCG significantly upregulated the expression of heme oxygenase-1 (HO-1), and downregulated the levels of pyroptotic molecules and inflammatory cytokines including Caspase-1, GSDMD, NLRP3, mature IL-1β, and IL-18. EGCG pretreatment also decreased the number of Caspase-1-positive microglia and GSDMD along with NLRP3-positive microglia after ICH. Conversely, an HO-1-specific inhibitor (ZnPP), significantly inhibited the anti-pyroptosis and anti-neuroinflammation effects of EGCG. Therefore, EGCG pretreatment alleviated microglial pyroptosis and neuroinflammation, at least in part through the Caspase-1/GSDMD/NLRP3 pathway by upregulating HO-1 expression after ICH. In addition, EGCG pretreatment promoted the polarization of microglia from the M1 phenotype to M2 phenotype after ICH. The results suggest that EGCG is a potential agent to attenuate neuroinflammation via its anti-pyroptosis effect after ICH.
期刊介绍:
Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.