Sarah M. Russel , Raluca E. Gosman , Katherine Gonzalez , Joshua Wright , Dennis O. Frank-Ito
{"title":"基于气道形态学诱导的鼻腔空气动力学对运动性鼻炎的见解。","authors":"Sarah M. Russel , Raluca E. Gosman , Katherine Gonzalez , Joshua Wright , Dennis O. Frank-Ito","doi":"10.1016/j.resp.2023.104171","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Exercise-induced rhinitis (EIR) is a poorly understood phenomenon that may be related to increased inspiratory airflow. Characterization of the development of EIR is important to understand contributing factors.</p></div><div><h3>Objective</h3><p>To characterize how different nasal morphologies respond to airflow-related variables during rapid/deep inspiratory conditions.</p></div><div><h3>Methods</h3><p>Subject-specific nasal airways were reconstructed from radiographic images. Unilateral airways were classified as Standard, Notched, or Elongated accord to their distinct nasal vestibule morphology. Computational fluid dynamics simulations were performed at various airflow rates.</p></div><div><h3>Results</h3><p>For all simulated flow rates, average resistance at the nasal vestibule, airflow velocity and wall sheer stress were highest in Notched. Average mucosal heat flux was highest in Standard. Notched phenotypes showed lower mean percent increases from 10 L/min to 50 L/min in all computed variables.</p></div><div><h3>Conclusion</h3><p>Resistance values and airflow velocities depicted a more constricted nasal vestibule in the Notched phenotypes, while perception of nasal mucosal cooling (heat flux) favored the Standard phenotypes. Different nasal phenotypes may predispose to EIR.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"319 ","pages":"Article 104171"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into exercise-induced rhinitis based on nasal aerodynamics induced by airway morphology\",\"authors\":\"Sarah M. Russel , Raluca E. Gosman , Katherine Gonzalez , Joshua Wright , Dennis O. Frank-Ito\",\"doi\":\"10.1016/j.resp.2023.104171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Exercise-induced rhinitis (EIR) is a poorly understood phenomenon that may be related to increased inspiratory airflow. Characterization of the development of EIR is important to understand contributing factors.</p></div><div><h3>Objective</h3><p>To characterize how different nasal morphologies respond to airflow-related variables during rapid/deep inspiratory conditions.</p></div><div><h3>Methods</h3><p>Subject-specific nasal airways were reconstructed from radiographic images. Unilateral airways were classified as Standard, Notched, or Elongated accord to their distinct nasal vestibule morphology. Computational fluid dynamics simulations were performed at various airflow rates.</p></div><div><h3>Results</h3><p>For all simulated flow rates, average resistance at the nasal vestibule, airflow velocity and wall sheer stress were highest in Notched. Average mucosal heat flux was highest in Standard. Notched phenotypes showed lower mean percent increases from 10 L/min to 50 L/min in all computed variables.</p></div><div><h3>Conclusion</h3><p>Resistance values and airflow velocities depicted a more constricted nasal vestibule in the Notched phenotypes, while perception of nasal mucosal cooling (heat flux) favored the Standard phenotypes. Different nasal phenotypes may predispose to EIR.</p></div>\",\"PeriodicalId\":20961,\"journal\":{\"name\":\"Respiratory Physiology & Neurobiology\",\"volume\":\"319 \",\"pages\":\"Article 104171\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiratory Physiology & Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569904823001593\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904823001593","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Insights into exercise-induced rhinitis based on nasal aerodynamics induced by airway morphology
Background
Exercise-induced rhinitis (EIR) is a poorly understood phenomenon that may be related to increased inspiratory airflow. Characterization of the development of EIR is important to understand contributing factors.
Objective
To characterize how different nasal morphologies respond to airflow-related variables during rapid/deep inspiratory conditions.
Methods
Subject-specific nasal airways were reconstructed from radiographic images. Unilateral airways were classified as Standard, Notched, or Elongated accord to their distinct nasal vestibule morphology. Computational fluid dynamics simulations were performed at various airflow rates.
Results
For all simulated flow rates, average resistance at the nasal vestibule, airflow velocity and wall sheer stress were highest in Notched. Average mucosal heat flux was highest in Standard. Notched phenotypes showed lower mean percent increases from 10 L/min to 50 L/min in all computed variables.
Conclusion
Resistance values and airflow velocities depicted a more constricted nasal vestibule in the Notched phenotypes, while perception of nasal mucosal cooling (heat flux) favored the Standard phenotypes. Different nasal phenotypes may predispose to EIR.
期刊介绍:
Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense.
Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as:
-Mechanics of breathing-
Gas exchange and acid-base balance-
Respiration at rest and exercise-
Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen-
Embryonic and adult respiration-
Comparative respiratory physiology.
Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.