从医院诊断记录中识别疾病的遗传亚型。

IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY
{"title":"从医院诊断记录中识别疾病的遗传亚型。","authors":"","doi":"10.1038/s41588-023-01521-9","DOIUrl":null,"url":null,"abstract":"We developed a computational, age-dependent topic model to identify longitudinal comorbidity patterns from hospital diagnosis data. The inferred comorbidity patterns are robust across UK and US populations and identify disease subtypes with distinct genetic profiles.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"55 11","pages":"1788-1789"},"PeriodicalIF":31.7000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying genetic subtypes of disease from hospital diagnosis records\",\"authors\":\"\",\"doi\":\"10.1038/s41588-023-01521-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed a computational, age-dependent topic model to identify longitudinal comorbidity patterns from hospital diagnosis data. The inferred comorbidity patterns are robust across UK and US populations and identify disease subtypes with distinct genetic profiles.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"55 11\",\"pages\":\"1788-1789\"},\"PeriodicalIF\":31.7000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41588-023-01521-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-023-01521-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一个依赖于年龄的计算主题模型,从医院诊断数据中识别纵向合并症模式。推断出的并发症模式在英国和美国人群中都很稳健,并能识别出具有不同遗传特征的疾病亚型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identifying genetic subtypes of disease from hospital diagnosis records

Identifying genetic subtypes of disease from hospital diagnosis records
We developed a computational, age-dependent topic model to identify longitudinal comorbidity patterns from hospital diagnosis data. The inferred comorbidity patterns are robust across UK and US populations and identify disease subtypes with distinct genetic profiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature genetics
Nature genetics 生物-遗传学
CiteScore
43.00
自引率
2.60%
发文量
241
审稿时长
3 months
期刊介绍: Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation. Integrative genetic topics comprise, but are not limited to: -Genes in the pathology of human disease -Molecular analysis of simple and complex genetic traits -Cancer genetics -Agricultural genomics -Developmental genetics -Regulatory variation in gene expression -Strategies and technologies for extracting function from genomic data -Pharmacological genomics -Genome evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信