对普遍存在的脚手架哌嗪构效关系的深刻认识:一个解释性的评论。

IF 1.9 4区 医学 Q3 CHEMISTRY, MEDICINAL
Jasmine Chaudhary, Vishal Sharma, Akash Jain, Diksha Sharma, Bhawna Chopra, Ashwani K Dhingra
{"title":"对普遍存在的脚手架哌嗪构效关系的深刻认识:一个解释性的评论。","authors":"Jasmine Chaudhary, Vishal Sharma, Akash Jain, Diksha Sharma, Bhawna Chopra, Ashwani K Dhingra","doi":"10.2174/0115734064244117230923172611","DOIUrl":null,"url":null,"abstract":"<p><p>Despite extensive research in the field of drug discovery and development, still there is a need to develop novel molecular entities. Literature reveals a substantial heterocyclic nucleus named, piperazine, which shows an immense therapeutic voyage. For several decades, molecules having the piperazine nucleus have entered the market as a drug exhibiting biological potential. It was known to possess antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardioprotective, and anti-inflammatory activity with a specific basis for structural activity relationship. Thus, it is regarded as a key structural feature in most of the already available therapeutic drugs in the market. Reports also suggest that the extensive utilization of these currently available drugs having a piperazine nucleus shows increasing tolerance significantly day by day. In addition to this, various other factors like solubility, low bioavailability, cost-effectiveness, and imbalance between pharmacokinetics and pharmacodynamics profile limit their utilization. Focusing on that issues, various structural modification studies were performed on the piperazine moiety to develop new derivatives/analogs to overcome the problems associated with available marketed drugs. Thus, this review article aims to gain insight into the number of structural modifications at the N-1 and N-4 positions of the piperazine scaffold. This SAR approach may prove to be the best way to overcome the above-discussed drawbacks and lead to the design of drug molecules with better efficacy and affinity. Hence, there is an urgent need to focus on the structural features of this scaffold which paves further work for deeper exploration and may help medicinal chemists as well as pharmaceutical industries.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Profound Insight into the Structure-activity Relationship of Ubiquitous Scaffold Piperazine: An Explicative Review.\",\"authors\":\"Jasmine Chaudhary, Vishal Sharma, Akash Jain, Diksha Sharma, Bhawna Chopra, Ashwani K Dhingra\",\"doi\":\"10.2174/0115734064244117230923172611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite extensive research in the field of drug discovery and development, still there is a need to develop novel molecular entities. Literature reveals a substantial heterocyclic nucleus named, piperazine, which shows an immense therapeutic voyage. For several decades, molecules having the piperazine nucleus have entered the market as a drug exhibiting biological potential. It was known to possess antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardioprotective, and anti-inflammatory activity with a specific basis for structural activity relationship. Thus, it is regarded as a key structural feature in most of the already available therapeutic drugs in the market. Reports also suggest that the extensive utilization of these currently available drugs having a piperazine nucleus shows increasing tolerance significantly day by day. In addition to this, various other factors like solubility, low bioavailability, cost-effectiveness, and imbalance between pharmacokinetics and pharmacodynamics profile limit their utilization. Focusing on that issues, various structural modification studies were performed on the piperazine moiety to develop new derivatives/analogs to overcome the problems associated with available marketed drugs. Thus, this review article aims to gain insight into the number of structural modifications at the N-1 and N-4 positions of the piperazine scaffold. This SAR approach may prove to be the best way to overcome the above-discussed drawbacks and lead to the design of drug molecules with better efficacy and affinity. Hence, there is an urgent need to focus on the structural features of this scaffold which paves further work for deeper exploration and may help medicinal chemists as well as pharmaceutical industries.</p>\",\"PeriodicalId\":18382,\"journal\":{\"name\":\"Medicinal Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734064244117230923172611\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734064244117230923172611","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管在药物发现和开发领域进行了广泛的研究,但仍然需要开发新的分子实体。文献揭示了一个实质性的杂环核,名为哌嗪,显示了一个巨大的治疗旅程。几十年来,具有哌嗪核的分子已经作为一种显示出生物潜力的药物进入市场。已知其具有抗精神病、抗组胺、抗心绞痛、抗抑郁、抗癌、抗病毒、心脏保护和抗炎活性,具有特定的结构活性关系基础。因此,它被认为是市场上大多数现有治疗药物的关键结构特征。报告还表明,这些目前可用的具有哌嗪核的药物的广泛使用显示出耐受性与日俱增。除此之外,各种其他因素,如溶解度、低生物利用度、成本效益以及药代动力学和药效学之间的不平衡,限制了它们的利用。围绕这一问题,对哌嗪部分进行了各种结构修饰研究,以开发新的衍生物/类似物,克服与现有上市药物相关的问题。因此,这篇综述文章旨在深入了解哌嗪支架N-1和N-4位置的结构修饰数量。这种SAR方法可能被证明是克服上述缺点并导致设计具有更好疗效和亲和力的药物分子的最佳方式。因此,迫切需要关注这种支架的结构特征,这为更深入的探索铺平了道路,并可能有助于药物化学家和制药行业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Profound Insight into the Structure-activity Relationship of Ubiquitous Scaffold Piperazine: An Explicative Review.

Despite extensive research in the field of drug discovery and development, still there is a need to develop novel molecular entities. Literature reveals a substantial heterocyclic nucleus named, piperazine, which shows an immense therapeutic voyage. For several decades, molecules having the piperazine nucleus have entered the market as a drug exhibiting biological potential. It was known to possess antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardioprotective, and anti-inflammatory activity with a specific basis for structural activity relationship. Thus, it is regarded as a key structural feature in most of the already available therapeutic drugs in the market. Reports also suggest that the extensive utilization of these currently available drugs having a piperazine nucleus shows increasing tolerance significantly day by day. In addition to this, various other factors like solubility, low bioavailability, cost-effectiveness, and imbalance between pharmacokinetics and pharmacodynamics profile limit their utilization. Focusing on that issues, various structural modification studies were performed on the piperazine moiety to develop new derivatives/analogs to overcome the problems associated with available marketed drugs. Thus, this review article aims to gain insight into the number of structural modifications at the N-1 and N-4 positions of the piperazine scaffold. This SAR approach may prove to be the best way to overcome the above-discussed drawbacks and lead to the design of drug molecules with better efficacy and affinity. Hence, there is an urgent need to focus on the structural features of this scaffold which paves further work for deeper exploration and may help medicinal chemists as well as pharmaceutical industries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medicinal Chemistry
Medicinal Chemistry 医学-医药化学
CiteScore
4.30
自引率
4.30%
发文量
109
审稿时长
12 months
期刊介绍: Aims & Scope Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信