Maryam Doroudian, Negar Pourzadi, Astha Gautam, Jürgen Gailer
{"title":"金属(类)物种的转化毒理学:将其血液中的生物无机化学与器官损伤发作联系起来。","authors":"Maryam Doroudian, Negar Pourzadi, Astha Gautam, Jürgen Gailer","doi":"10.1007/s10534-023-00537-2","DOIUrl":null,"url":null,"abstract":"<div><p>The quantification of arsenic, mercury, cadmium and lead in the human bloodstream is routinely used today to assess exposure to these toxic metal(loid)s, but the interpretation of the obtained data in terms of their cumulative health relevance remains problematic. Seemingly unrelated to this, epidemiological studies strongly suggest that the simultaneous chronic exposure to these environmental pollutants is associated with the etiology of autism, type 2 diabetes, irritable bowel disease and other diseases. This from a public health point of view undesirable situation urgently requires research initiatives to establish functional connections between human exposure to multiple toxic metal(loid) species and adverse health effects. One way to establish causal exposure-response relationships is a molecular toxicology approach, which requires one to unravel the biomolecular mechanisms that unfold after individual toxic metal(loid)s enter the bloodstream/organ nexus as these interactions ultimately determine which metabolites impinge on target organs and thus provide mechanistic links to diseases of unknown etiology. In an attempt to underscore the importance of the toxicological chemistry of metal(loid)s in the bloodstream, this review summarizes recent progress into relevant bioinorganic processes that are implicated in the etiology of adverse organ-based health effects and possibly diseases. A better understanding of these bioinorganic processes will not only help to improve the regulatory framework to better protect humans from the adverse effects of toxic metal(loid) species, but also represents an important starting point for the development of treatments to ameliorate pollution-induced adverse health effects on human populations, including pregnant women, the fetus and children.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Translational toxicology of metal(loid) species: linking their bioinorganic chemistry in the bloodstream to organ damage onset\",\"authors\":\"Maryam Doroudian, Negar Pourzadi, Astha Gautam, Jürgen Gailer\",\"doi\":\"10.1007/s10534-023-00537-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The quantification of arsenic, mercury, cadmium and lead in the human bloodstream is routinely used today to assess exposure to these toxic metal(loid)s, but the interpretation of the obtained data in terms of their cumulative health relevance remains problematic. Seemingly unrelated to this, epidemiological studies strongly suggest that the simultaneous chronic exposure to these environmental pollutants is associated with the etiology of autism, type 2 diabetes, irritable bowel disease and other diseases. This from a public health point of view undesirable situation urgently requires research initiatives to establish functional connections between human exposure to multiple toxic metal(loid) species and adverse health effects. One way to establish causal exposure-response relationships is a molecular toxicology approach, which requires one to unravel the biomolecular mechanisms that unfold after individual toxic metal(loid)s enter the bloodstream/organ nexus as these interactions ultimately determine which metabolites impinge on target organs and thus provide mechanistic links to diseases of unknown etiology. In an attempt to underscore the importance of the toxicological chemistry of metal(loid)s in the bloodstream, this review summarizes recent progress into relevant bioinorganic processes that are implicated in the etiology of adverse organ-based health effects and possibly diseases. A better understanding of these bioinorganic processes will not only help to improve the regulatory framework to better protect humans from the adverse effects of toxic metal(loid) species, but also represents an important starting point for the development of treatments to ameliorate pollution-induced adverse health effects on human populations, including pregnant women, the fetus and children.</p></div>\",\"PeriodicalId\":491,\"journal\":{\"name\":\"Biometals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometals\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10534-023-00537-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10534-023-00537-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Translational toxicology of metal(loid) species: linking their bioinorganic chemistry in the bloodstream to organ damage onset
The quantification of arsenic, mercury, cadmium and lead in the human bloodstream is routinely used today to assess exposure to these toxic metal(loid)s, but the interpretation of the obtained data in terms of their cumulative health relevance remains problematic. Seemingly unrelated to this, epidemiological studies strongly suggest that the simultaneous chronic exposure to these environmental pollutants is associated with the etiology of autism, type 2 diabetes, irritable bowel disease and other diseases. This from a public health point of view undesirable situation urgently requires research initiatives to establish functional connections between human exposure to multiple toxic metal(loid) species and adverse health effects. One way to establish causal exposure-response relationships is a molecular toxicology approach, which requires one to unravel the biomolecular mechanisms that unfold after individual toxic metal(loid)s enter the bloodstream/organ nexus as these interactions ultimately determine which metabolites impinge on target organs and thus provide mechanistic links to diseases of unknown etiology. In an attempt to underscore the importance of the toxicological chemistry of metal(loid)s in the bloodstream, this review summarizes recent progress into relevant bioinorganic processes that are implicated in the etiology of adverse organ-based health effects and possibly diseases. A better understanding of these bioinorganic processes will not only help to improve the regulatory framework to better protect humans from the adverse effects of toxic metal(loid) species, but also represents an important starting point for the development of treatments to ameliorate pollution-induced adverse health effects on human populations, including pregnant women, the fetus and children.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.