Huan Hu , Xing-Yi Wei , Li Liu , Yuan-Bo Wang , Huang-Jie Jia , Ling-Kang Bu , De-Sheng Pei
{"title":"监督机器学习提高了eDNA元条形码在储层健康监测中的普遍适用性。","authors":"Huan Hu , Xing-Yi Wei , Li Liu , Yuan-Bo Wang , Huang-Jie Jia , Ling-Kang Bu , De-Sheng Pei","doi":"10.1016/j.watres.2023.120686","DOIUrl":null,"url":null,"abstract":"<div><p>Effective and standardized monitoring methodologies are vital for successful reservoir restoration and management. Environmental DNA (eDNA) metabarcoding sequencing offers a promising alternative for biomonitoring and can overcome many limitations of traditional morphological bioassessment. Recent attempts have even shown that supervised machine learning (SML) can directly infer biotic indices (BI) from eDNA metabarcoding data, bypassing the cumbersome calculation process of BI regardless of the taxonomic assignment of eDNA sequences. However, questions surrounding the general applicability of this taxonomy-free approach to monitoring reservoir health remain unclear, including model stability, feature selection, algorithm choice, and multi-season biomonitoring. Here, we firstly developed a novel biological integrity index (Me-IBI) that integrates multitrophic interactions and environmental information, based on taxonomy-assigned eDNA metabarcoding data. The Me-IBI can better distinguish the actual health status of the Three Gorges Reservoir (TGR) than physicochemical assessments and have a clear response to human activity. Then, taking this reliable Me-IBI as a supervised label, we compared the impact of selecting different numbers of features and SML algorithms on the stability and predictive performance of the model for predicting ecological conditions in multiple seasons using taxonomy-free eDNA metabarcoding data. We discovered that even with a small number of features, different SML algorithms can establish a stable model and obtain excellent predictive performance. Finally, we proposed a four-step strategy for standardized routine biomonitoring using SML tools. Our study firstly explores the general applicability problem of the taxonomy-free eDNA-SML approach and establishes a solid foundation for the large-scale and standardized biomonitoring application.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"246 ","pages":"Article 120686"},"PeriodicalIF":12.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supervised machine learning improves general applicability of eDNA metabarcoding for reservoir health monitoring\",\"authors\":\"Huan Hu , Xing-Yi Wei , Li Liu , Yuan-Bo Wang , Huang-Jie Jia , Ling-Kang Bu , De-Sheng Pei\",\"doi\":\"10.1016/j.watres.2023.120686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Effective and standardized monitoring methodologies are vital for successful reservoir restoration and management. Environmental DNA (eDNA) metabarcoding sequencing offers a promising alternative for biomonitoring and can overcome many limitations of traditional morphological bioassessment. Recent attempts have even shown that supervised machine learning (SML) can directly infer biotic indices (BI) from eDNA metabarcoding data, bypassing the cumbersome calculation process of BI regardless of the taxonomic assignment of eDNA sequences. However, questions surrounding the general applicability of this taxonomy-free approach to monitoring reservoir health remain unclear, including model stability, feature selection, algorithm choice, and multi-season biomonitoring. Here, we firstly developed a novel biological integrity index (Me-IBI) that integrates multitrophic interactions and environmental information, based on taxonomy-assigned eDNA metabarcoding data. The Me-IBI can better distinguish the actual health status of the Three Gorges Reservoir (TGR) than physicochemical assessments and have a clear response to human activity. Then, taking this reliable Me-IBI as a supervised label, we compared the impact of selecting different numbers of features and SML algorithms on the stability and predictive performance of the model for predicting ecological conditions in multiple seasons using taxonomy-free eDNA metabarcoding data. We discovered that even with a small number of features, different SML algorithms can establish a stable model and obtain excellent predictive performance. Finally, we proposed a four-step strategy for standardized routine biomonitoring using SML tools. Our study firstly explores the general applicability problem of the taxonomy-free eDNA-SML approach and establishes a solid foundation for the large-scale and standardized biomonitoring application.</p></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"246 \",\"pages\":\"Article 120686\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043135423011260\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135423011260","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Supervised machine learning improves general applicability of eDNA metabarcoding for reservoir health monitoring
Effective and standardized monitoring methodologies are vital for successful reservoir restoration and management. Environmental DNA (eDNA) metabarcoding sequencing offers a promising alternative for biomonitoring and can overcome many limitations of traditional morphological bioassessment. Recent attempts have even shown that supervised machine learning (SML) can directly infer biotic indices (BI) from eDNA metabarcoding data, bypassing the cumbersome calculation process of BI regardless of the taxonomic assignment of eDNA sequences. However, questions surrounding the general applicability of this taxonomy-free approach to monitoring reservoir health remain unclear, including model stability, feature selection, algorithm choice, and multi-season biomonitoring. Here, we firstly developed a novel biological integrity index (Me-IBI) that integrates multitrophic interactions and environmental information, based on taxonomy-assigned eDNA metabarcoding data. The Me-IBI can better distinguish the actual health status of the Three Gorges Reservoir (TGR) than physicochemical assessments and have a clear response to human activity. Then, taking this reliable Me-IBI as a supervised label, we compared the impact of selecting different numbers of features and SML algorithms on the stability and predictive performance of the model for predicting ecological conditions in multiple seasons using taxonomy-free eDNA metabarcoding data. We discovered that even with a small number of features, different SML algorithms can establish a stable model and obtain excellent predictive performance. Finally, we proposed a four-step strategy for standardized routine biomonitoring using SML tools. Our study firstly explores the general applicability problem of the taxonomy-free eDNA-SML approach and establishes a solid foundation for the large-scale and standardized biomonitoring application.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.