利尿激素31激活两个G蛋白偶联受体和不同的利尿第二信使。

IF 3.2 2区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ho Jung Yoon , Briana E. Price , Ryssa K. Parks , Seung-Joon Ahn , Man-Yeon Choi
{"title":"利尿激素31激活两个G蛋白偶联受体和不同的利尿第二信使。","authors":"Ho Jung Yoon ,&nbsp;Briana E. Price ,&nbsp;Ryssa K. Parks ,&nbsp;Seung-Joon Ahn ,&nbsp;Man-Yeon Choi","doi":"10.1016/j.ibmb.2023.104025","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Diuretic hormones (DHs) bind to G protein-coupled receptors (GPCRs), regulating water and ion balance to maintain </span>homeostasis<span> in animals. Two distinct DHs are known in insects: calcitonin (CT)-like DH31 and corticotropin-releasing factor (CRF)-like DH44. In this study, we identified and characterized DH31 and two DH31 GPCR variants, DH31-Ra and DH31-Rb, from spotted-wing drosophila, </span></span><span><em>Drosophila suzukii</em></span><span><span><span>, a globally prevalent vinegar fly causing severe damage to small fruits. Both GPCRs are active, but DH31-Ra is the dominant receptor based on gene expression analyses and DH31 peptide </span>binding affinities<span><span><span>. A notable difference between the two variants lies in 1) the GPCR structures of their C-termini and 2) the utilization of second messengers, and the </span>amino acid sequences of the two variants are identical. DH31-Ra contains 12 additional </span>amino acids, providing different intracellular C-terminal configurations. DH31-Ra utilizes both </span></span>cAMP and Ca</span><sup>2+</sup> as second messengers, whereas DH31-Rb utilizes only cAMP; this is the first time reported for an insect CT-like DH31 peptide. DH31 stimulated fluid secretion in <em>D. suzukii</em><span><span> adults, and secretion increased in a dose-dependent manner. However, when the fly was injected with a mixture of DH31 and CAPA, an anti-diuretic hormone, fluid secretion was suppressed. Here, we discuss the structures of the DH31 receptors and the differential signaling pathways, including second messengers, involved in fly </span>diuresis. These findings provide fundamental insights into the characterization of </span><em>D. suzukii</em> DH31 and DH31-Rs, and facilitate the identification of potential biological targets for <em>D. suzukii</em> management.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"162 ","pages":"Article 104025"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diuretic hormone 31 activates two G protein-coupled receptors with differential second messengers for diuresis in Drosophila suzukii\",\"authors\":\"Ho Jung Yoon ,&nbsp;Briana E. Price ,&nbsp;Ryssa K. Parks ,&nbsp;Seung-Joon Ahn ,&nbsp;Man-Yeon Choi\",\"doi\":\"10.1016/j.ibmb.2023.104025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Diuretic hormones (DHs) bind to G protein-coupled receptors (GPCRs), regulating water and ion balance to maintain </span>homeostasis<span> in animals. Two distinct DHs are known in insects: calcitonin (CT)-like DH31 and corticotropin-releasing factor (CRF)-like DH44. In this study, we identified and characterized DH31 and two DH31 GPCR variants, DH31-Ra and DH31-Rb, from spotted-wing drosophila, </span></span><span><em>Drosophila suzukii</em></span><span><span><span>, a globally prevalent vinegar fly causing severe damage to small fruits. Both GPCRs are active, but DH31-Ra is the dominant receptor based on gene expression analyses and DH31 peptide </span>binding affinities<span><span><span>. A notable difference between the two variants lies in 1) the GPCR structures of their C-termini and 2) the utilization of second messengers, and the </span>amino acid sequences of the two variants are identical. DH31-Ra contains 12 additional </span>amino acids, providing different intracellular C-terminal configurations. DH31-Ra utilizes both </span></span>cAMP and Ca</span><sup>2+</sup> as second messengers, whereas DH31-Rb utilizes only cAMP; this is the first time reported for an insect CT-like DH31 peptide. DH31 stimulated fluid secretion in <em>D. suzukii</em><span><span> adults, and secretion increased in a dose-dependent manner. However, when the fly was injected with a mixture of DH31 and CAPA, an anti-diuretic hormone, fluid secretion was suppressed. Here, we discuss the structures of the DH31 receptors and the differential signaling pathways, including second messengers, involved in fly </span>diuresis. These findings provide fundamental insights into the characterization of </span><em>D. suzukii</em> DH31 and DH31-Rs, and facilitate the identification of potential biological targets for <em>D. suzukii</em> management.</p></div>\",\"PeriodicalId\":330,\"journal\":{\"name\":\"Insect Biochemistry and Molecular Biology\",\"volume\":\"162 \",\"pages\":\"Article 104025\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0965174823001194\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174823001194","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

利尿激素(DHs)与G蛋白偶联受体(GPCR)结合,调节水和离子平衡,以维持动物体内的稳态。昆虫体内已知两种不同的DHs:降钙素(CT)样DH31和促肾上腺皮质激素释放因子(CRF)样DH44。在这项研究中,我们从斑翅果蝇(drosophila suzukii)中鉴定并表征了DH31和两种DH31GPCR变体,DH31Ra和DH31Rb,这是一种全球流行的醋蝇,对小水果造成严重损害。两种GPCR都是活性的,但基于基因表达分析和DH31肽结合亲和力,DH31Ra是显性受体。两种变体之间的显著差异在于1)其C末端的GPCR结构和2)第二信使的利用,并且两种变体的氨基酸序列相同。DH31Ra含有12个额外的氨基酸,提供不同的细胞内C末端构型。DH31Ra同时利用cAMP和Ca2+作为第二信使,而DH31Rb仅利用cAMP;这是首次报道昆虫CT样DH31肽。DH31刺激suzukii成虫的液体分泌,并且分泌以剂量依赖的方式增加。然而,当给苍蝇注射DH31和CAPA(一种抗利尿激素)的混合物时,液体分泌受到抑制。在这里,我们讨论了DH31受体的结构和与苍蝇利尿有关的不同信号通路,包括第二信使。这些发现为铃木D.suzukii DH31和DH31Rs的表征提供了基本的见解,并有助于识别铃木D.suzukii管理的潜在生物靶标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Diuretic hormone 31 activates two G protein-coupled receptors with differential second messengers for diuresis in Drosophila suzukii

Diuretic hormone 31 activates two G protein-coupled receptors with differential second messengers for diuresis in Drosophila suzukii

Diuretic hormones (DHs) bind to G protein-coupled receptors (GPCRs), regulating water and ion balance to maintain homeostasis in animals. Two distinct DHs are known in insects: calcitonin (CT)-like DH31 and corticotropin-releasing factor (CRF)-like DH44. In this study, we identified and characterized DH31 and two DH31 GPCR variants, DH31-Ra and DH31-Rb, from spotted-wing drosophila, Drosophila suzukii, a globally prevalent vinegar fly causing severe damage to small fruits. Both GPCRs are active, but DH31-Ra is the dominant receptor based on gene expression analyses and DH31 peptide binding affinities. A notable difference between the two variants lies in 1) the GPCR structures of their C-termini and 2) the utilization of second messengers, and the amino acid sequences of the two variants are identical. DH31-Ra contains 12 additional amino acids, providing different intracellular C-terminal configurations. DH31-Ra utilizes both cAMP and Ca2+ as second messengers, whereas DH31-Rb utilizes only cAMP; this is the first time reported for an insect CT-like DH31 peptide. DH31 stimulated fluid secretion in D. suzukii adults, and secretion increased in a dose-dependent manner. However, when the fly was injected with a mixture of DH31 and CAPA, an anti-diuretic hormone, fluid secretion was suppressed. Here, we discuss the structures of the DH31 receptors and the differential signaling pathways, including second messengers, involved in fly diuresis. These findings provide fundamental insights into the characterization of D. suzukii DH31 and DH31-Rs, and facilitate the identification of potential biological targets for D. suzukii management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
5.30%
发文量
105
审稿时长
40 days
期刊介绍: This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信