J. M. Serra, M. Balaguer, J. Santos-Blasco, J. F. Borras-Morell, B. Garcia-Baños, P. Plaza-Gonzalez, D. Catalán-Martínez, F. Penaranda-Foix, A. Domínguez, L. Navarrete and J. M. Catala-Civera
{"title":"利用微波辐射调节固态离子导电材料的氧化还原特性。","authors":"J. M. Serra, M. Balaguer, J. Santos-Blasco, J. F. Borras-Morell, B. Garcia-Baños, P. Plaza-Gonzalez, D. Catalán-Martínez, F. Penaranda-Foix, A. Domínguez, L. Navarrete and J. M. Catala-Civera","doi":"10.1039/D3MH01339A","DOIUrl":null,"url":null,"abstract":"<p >The industrial adoption of low-carbon technologies and renewable electricity requires novel tools for electrifying unitary steps and efficient energy storage, such as the catalytic synthesis of valuable chemical carriers. The recently-discovered use of microwaves as an effective reducing agent of solid materials provides a novel framework to improve this chemical-conversion route, thanks to promoting oxygen-vacancy formation and O<small><sub>2</sub></small>-surface exchange at low temperatures. However, many efforts are still required to boost the redox properties and process efficiency. Here, we scrutinise the dynamics and the physicochemical dependencies governing microwave-induced redox transformations on solid-state ion-conducting materials. The reduction is triggered upon a material-dependent induction temperature, leading to a characteristically abrupt rise in electric conductivity. This work reveals that the released O<small><sub>2</sub></small> yield strongly depends on the material's composition and can be tuned by controlling the gas-environment composition and the intensity of the microwave power. The reduction effect prevails at the grain surface level and, thus, amplifies for fine-grained materials, and this is ascribed to limitations in oxygen-vacancy diffusion across the grain compared to a microwave-enhanced surface evacuation. The precise cyclability and stability of the redox process will enable multiple applications like gas depuration, energy storage, or hydrogen generation in several industrial applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 12","pages":" 5796-5804"},"PeriodicalIF":12.2000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/mh/d3mh01339a?page=search","citationCount":"0","resultStr":"{\"title\":\"Modulating redox properties of solid-state ion-conducting materials using microwave irradiation\",\"authors\":\"J. M. Serra, M. Balaguer, J. Santos-Blasco, J. F. Borras-Morell, B. Garcia-Baños, P. Plaza-Gonzalez, D. Catalán-Martínez, F. Penaranda-Foix, A. Domínguez, L. Navarrete and J. M. Catala-Civera\",\"doi\":\"10.1039/D3MH01339A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The industrial adoption of low-carbon technologies and renewable electricity requires novel tools for electrifying unitary steps and efficient energy storage, such as the catalytic synthesis of valuable chemical carriers. The recently-discovered use of microwaves as an effective reducing agent of solid materials provides a novel framework to improve this chemical-conversion route, thanks to promoting oxygen-vacancy formation and O<small><sub>2</sub></small>-surface exchange at low temperatures. However, many efforts are still required to boost the redox properties and process efficiency. Here, we scrutinise the dynamics and the physicochemical dependencies governing microwave-induced redox transformations on solid-state ion-conducting materials. The reduction is triggered upon a material-dependent induction temperature, leading to a characteristically abrupt rise in electric conductivity. This work reveals that the released O<small><sub>2</sub></small> yield strongly depends on the material's composition and can be tuned by controlling the gas-environment composition and the intensity of the microwave power. The reduction effect prevails at the grain surface level and, thus, amplifies for fine-grained materials, and this is ascribed to limitations in oxygen-vacancy diffusion across the grain compared to a microwave-enhanced surface evacuation. The precise cyclability and stability of the redox process will enable multiple applications like gas depuration, energy storage, or hydrogen generation in several industrial applications.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" 12\",\"pages\":\" 5796-5804\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2023/mh/d3mh01339a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/mh/d3mh01339a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/mh/d3mh01339a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Modulating redox properties of solid-state ion-conducting materials using microwave irradiation
The industrial adoption of low-carbon technologies and renewable electricity requires novel tools for electrifying unitary steps and efficient energy storage, such as the catalytic synthesis of valuable chemical carriers. The recently-discovered use of microwaves as an effective reducing agent of solid materials provides a novel framework to improve this chemical-conversion route, thanks to promoting oxygen-vacancy formation and O2-surface exchange at low temperatures. However, many efforts are still required to boost the redox properties and process efficiency. Here, we scrutinise the dynamics and the physicochemical dependencies governing microwave-induced redox transformations on solid-state ion-conducting materials. The reduction is triggered upon a material-dependent induction temperature, leading to a characteristically abrupt rise in electric conductivity. This work reveals that the released O2 yield strongly depends on the material's composition and can be tuned by controlling the gas-environment composition and the intensity of the microwave power. The reduction effect prevails at the grain surface level and, thus, amplifies for fine-grained materials, and this is ascribed to limitations in oxygen-vacancy diffusion across the grain compared to a microwave-enhanced surface evacuation. The precise cyclability and stability of the redox process will enable multiple applications like gas depuration, energy storage, or hydrogen generation in several industrial applications.