Pablo Merodio, Francisco Martínez-Moreno, Rodrigo Moretón, Eduardo Lorenzo
{"title":"双面光伏系统的反照率测量和能量产额估计的不确定度","authors":"Pablo Merodio, Francisco Martínez-Moreno, Rodrigo Moretón, Eduardo Lorenzo","doi":"10.1002/pip.3728","DOIUrl":null,"url":null,"abstract":"<p>The deployment of bifacial photovoltaic (PV) modules for utility-scale PV plants has quickly proliferated in recent years. As they can harness the irradiance received at the rear side of bifacial generators—which depends on the albedo of the reflector ground—bifacial modules provide higher productivity than monofacial modules, in exchange for a low increase in manufacturing costs. However, the reduction of PV performance estimations uncertainty still represents a main concern for both PV and financial actors, which seek to reduce financial risks of bifacial PV systems. The aim of this work is to provide a better understanding of the impact that albedo measurements have on PV yield estimations uncertainty. We analysed the albedo sensitivity coefficient relating albedo measurement and subsequent energy yield estimations' uncertainties through a representative yield simulation exercise performed for three different sites (Chile, Spain and Sweden) and two types of PV plants: static and single-axis tracker. A formula considering the impact of Ground Coverage Ratio and Inverter Loading Ratio is proposed for this coefficient. We performed an experimental campaign to evaluate the uncertainty associated to different albedo measurement conditions. Surface reflectance of five different ground surfaces has been measured using four sensors, which allowed to obtain three useful types of albedos that we defined and described. A series of recommendations for short-term ground-based albedo measurements that entail a maximum of 1.5% yield uncertainty contribution in the frame of commercial PV plants are then derived. A representative case of actual albedo measurement practices at the current PV market scene is also presented in the form of a commercial albedo measurement project for a future 50 MW bifacial PV plant. Despite being a local characteristic, the most relevant uncertainty source found is associated to the non-homogeneity of the future PV plant's surface. An important consideration is that changes in the use of land caused by the construction of a PV plant lead to an albedo uncertainty that predominates over all the uncertainty sources associated to the albedo measurement conditions. This can also be the case for long-term seasonal variations, which can become the dominant uncertainty source for high latitude locations.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"31 11","pages":"1130-1143"},"PeriodicalIF":8.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3728","citationCount":"1","resultStr":"{\"title\":\"Albedo measurements and energy yield estimation uncertainty for bifacial photovoltaic systems\",\"authors\":\"Pablo Merodio, Francisco Martínez-Moreno, Rodrigo Moretón, Eduardo Lorenzo\",\"doi\":\"10.1002/pip.3728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The deployment of bifacial photovoltaic (PV) modules for utility-scale PV plants has quickly proliferated in recent years. As they can harness the irradiance received at the rear side of bifacial generators—which depends on the albedo of the reflector ground—bifacial modules provide higher productivity than monofacial modules, in exchange for a low increase in manufacturing costs. However, the reduction of PV performance estimations uncertainty still represents a main concern for both PV and financial actors, which seek to reduce financial risks of bifacial PV systems. The aim of this work is to provide a better understanding of the impact that albedo measurements have on PV yield estimations uncertainty. We analysed the albedo sensitivity coefficient relating albedo measurement and subsequent energy yield estimations' uncertainties through a representative yield simulation exercise performed for three different sites (Chile, Spain and Sweden) and two types of PV plants: static and single-axis tracker. A formula considering the impact of Ground Coverage Ratio and Inverter Loading Ratio is proposed for this coefficient. We performed an experimental campaign to evaluate the uncertainty associated to different albedo measurement conditions. Surface reflectance of five different ground surfaces has been measured using four sensors, which allowed to obtain three useful types of albedos that we defined and described. A series of recommendations for short-term ground-based albedo measurements that entail a maximum of 1.5% yield uncertainty contribution in the frame of commercial PV plants are then derived. A representative case of actual albedo measurement practices at the current PV market scene is also presented in the form of a commercial albedo measurement project for a future 50 MW bifacial PV plant. Despite being a local characteristic, the most relevant uncertainty source found is associated to the non-homogeneity of the future PV plant's surface. An important consideration is that changes in the use of land caused by the construction of a PV plant lead to an albedo uncertainty that predominates over all the uncertainty sources associated to the albedo measurement conditions. This can also be the case for long-term seasonal variations, which can become the dominant uncertainty source for high latitude locations.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"31 11\",\"pages\":\"1130-1143\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3728\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3728\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3728","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Albedo measurements and energy yield estimation uncertainty for bifacial photovoltaic systems
The deployment of bifacial photovoltaic (PV) modules for utility-scale PV plants has quickly proliferated in recent years. As they can harness the irradiance received at the rear side of bifacial generators—which depends on the albedo of the reflector ground—bifacial modules provide higher productivity than monofacial modules, in exchange for a low increase in manufacturing costs. However, the reduction of PV performance estimations uncertainty still represents a main concern for both PV and financial actors, which seek to reduce financial risks of bifacial PV systems. The aim of this work is to provide a better understanding of the impact that albedo measurements have on PV yield estimations uncertainty. We analysed the albedo sensitivity coefficient relating albedo measurement and subsequent energy yield estimations' uncertainties through a representative yield simulation exercise performed for three different sites (Chile, Spain and Sweden) and two types of PV plants: static and single-axis tracker. A formula considering the impact of Ground Coverage Ratio and Inverter Loading Ratio is proposed for this coefficient. We performed an experimental campaign to evaluate the uncertainty associated to different albedo measurement conditions. Surface reflectance of five different ground surfaces has been measured using four sensors, which allowed to obtain three useful types of albedos that we defined and described. A series of recommendations for short-term ground-based albedo measurements that entail a maximum of 1.5% yield uncertainty contribution in the frame of commercial PV plants are then derived. A representative case of actual albedo measurement practices at the current PV market scene is also presented in the form of a commercial albedo measurement project for a future 50 MW bifacial PV plant. Despite being a local characteristic, the most relevant uncertainty source found is associated to the non-homogeneity of the future PV plant's surface. An important consideration is that changes in the use of land caused by the construction of a PV plant lead to an albedo uncertainty that predominates over all the uncertainty sources associated to the albedo measurement conditions. This can also be the case for long-term seasonal variations, which can become the dominant uncertainty source for high latitude locations.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.