用于热能存储的导热熔盐:混合石墨-石墨烯纳米板填料的协同效应。

IF 4.4 4区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Adi Lavi, Avia Ohayon-Lavi, Yelena Leibovitch, Shmuel Hayun, Efrat Ruse, Oren Regev
{"title":"用于热能存储的导热熔盐:混合石墨-石墨烯纳米板填料的协同效应。","authors":"Adi Lavi,&nbsp;Avia Ohayon-Lavi,&nbsp;Yelena Leibovitch,&nbsp;Shmuel Hayun,&nbsp;Efrat Ruse,&nbsp;Oren Regev","doi":"10.1002/gch2.202300053","DOIUrl":null,"url":null,"abstract":"<p>Renewable energy technologies depend, to a large extent, on the efficiency of thermal energy storage (TES) devices. In such storage applications, molten salts constitute an attractive platform due to their thermal and environmentally friendly properties. However, the low thermal conductivity (TC) of these salts (&lt;1 W m<sup>−1</sup> K<sup>−1</sup>) downgrades the storage kinetics. A commonly used method to enhance TC is the addition of highly conductive carbon-based fillers that form a composite material with molten salt. However, even that enhancement is rather limited (&lt;9 W m<sup>−1</sup> K<sup>−1</sup>). In this study, the partial exfoliation of graphite to graphene nanoplatelets (GnP) in a molten salt matrix is explored as a means to address this problem. A novel approach of hybrid filler formation directly in the molten salt is used to produce graphite–GnP–salt hybrid composite material. The good dispersion quality of the fillers in the salt matrix facilitates bridging between large graphite particles by the smaller GnP particles, resulting in the formation of a thermally conductive network. The thermal conductivity of the hybrid composite (up to 44 W m<sup>−1</sup> K<sup>−1</sup>) is thus enhanced by two orders of magnitude versus that of the pristine salt (0.64 W m<sup>−1</sup> K<sup>−1</sup>).</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"7 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300053","citationCount":"0","resultStr":"{\"title\":\"Thermally Conductive Molten Salt for Thermal Energy Storage: Synergistic Effect of a Hybrid Graphite-Graphene Nanoplatelet Filler\",\"authors\":\"Adi Lavi,&nbsp;Avia Ohayon-Lavi,&nbsp;Yelena Leibovitch,&nbsp;Shmuel Hayun,&nbsp;Efrat Ruse,&nbsp;Oren Regev\",\"doi\":\"10.1002/gch2.202300053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Renewable energy technologies depend, to a large extent, on the efficiency of thermal energy storage (TES) devices. In such storage applications, molten salts constitute an attractive platform due to their thermal and environmentally friendly properties. However, the low thermal conductivity (TC) of these salts (&lt;1 W m<sup>−1</sup> K<sup>−1</sup>) downgrades the storage kinetics. A commonly used method to enhance TC is the addition of highly conductive carbon-based fillers that form a composite material with molten salt. However, even that enhancement is rather limited (&lt;9 W m<sup>−1</sup> K<sup>−1</sup>). In this study, the partial exfoliation of graphite to graphene nanoplatelets (GnP) in a molten salt matrix is explored as a means to address this problem. A novel approach of hybrid filler formation directly in the molten salt is used to produce graphite–GnP–salt hybrid composite material. The good dispersion quality of the fillers in the salt matrix facilitates bridging between large graphite particles by the smaller GnP particles, resulting in the formation of a thermally conductive network. The thermal conductivity of the hybrid composite (up to 44 W m<sup>−1</sup> K<sup>−1</sup>) is thus enhanced by two orders of magnitude versus that of the pristine salt (0.64 W m<sup>−1</sup> K<sup>−1</sup>).</p>\",\"PeriodicalId\":12646,\"journal\":{\"name\":\"Global Challenges\",\"volume\":\"7 9\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300053\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Challenges\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202300053\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202300053","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

可再生能源技术在很大程度上取决于热能储存(TES)设备的效率。在这样的存储应用中,熔融盐由于其热和环境友好的特性而构成了一个有吸引力的平台。然而,这些盐(-1 K-1)的低导热率(TC)降低了储存动力学。提高TC的常用方法是添加高导电性的碳基填料,该填料与熔融盐形成复合材料。然而,即使是这种增强也是相当有限的(-1 K-1)。在这项研究中,石墨在熔盐基质中部分剥离为石墨烯纳米片(GnP)是解决这一问题的一种方法。采用一种直接在熔盐中形成杂化填料的新方法来制备石墨-GnP盐杂化复合材料。填料在盐基质中的良好分散质量有助于较小的GnP颗粒在大石墨颗粒之间桥接,从而形成导热网络。混合复合材料的热导率(高达44W m-1 K-1)因此比原始盐的热导率提高了两个数量级(0.64W m-1 K-1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermally Conductive Molten Salt for Thermal Energy Storage: Synergistic Effect of a Hybrid Graphite-Graphene Nanoplatelet Filler

Thermally Conductive Molten Salt for Thermal Energy Storage: Synergistic Effect of a Hybrid Graphite-Graphene Nanoplatelet Filler

Renewable energy technologies depend, to a large extent, on the efficiency of thermal energy storage (TES) devices. In such storage applications, molten salts constitute an attractive platform due to their thermal and environmentally friendly properties. However, the low thermal conductivity (TC) of these salts (<1 W m−1 K−1) downgrades the storage kinetics. A commonly used method to enhance TC is the addition of highly conductive carbon-based fillers that form a composite material with molten salt. However, even that enhancement is rather limited (<9 W m−1 K−1). In this study, the partial exfoliation of graphite to graphene nanoplatelets (GnP) in a molten salt matrix is explored as a means to address this problem. A novel approach of hybrid filler formation directly in the molten salt is used to produce graphite–GnP–salt hybrid composite material. The good dispersion quality of the fillers in the salt matrix facilitates bridging between large graphite particles by the smaller GnP particles, resulting in the formation of a thermally conductive network. The thermal conductivity of the hybrid composite (up to 44 W m−1 K−1) is thus enhanced by two orders of magnitude versus that of the pristine salt (0.64 W m−1 K−1).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Challenges
Global Challenges MULTIDISCIPLINARY SCIENCES-
CiteScore
8.70
自引率
0.00%
发文量
79
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信