{"title":"水稻分子设计育种的启示:传统与现代的交融。","authors":"Zhong Bian, Dong-Ping Cao, Wen-Shu Zhuang, Shu-Wei Zhang, Qiao-Quan Liu, Lin Zhang","doi":"10.16288/j.yczz.23-092","DOIUrl":null,"url":null,"abstract":"<p><p>As one of the major staple crops, rice feeds more than one half of the world population. Due to increasing population and dramatic climate change, the rice varieties with higher yield performance and excellent overall agronomic performance should be developed. The raise of molecular design breeding concept provides opportunity to get new breakthrough for variety development, and it is important to clarify the efficient gene combination during actual breeding. In this review, we summarize the recent advances about rice variety improvement either by marker assisted selection (MAS) breeding or popular gene editing technique, which will be beneficial to understand different aspects of the molecular design breeding. We provide genetic views for the classical MAS application, including the genetic effect of key genes and their combinations, the recurrent genome recovery rate at different backcross generations, linkage drag and recombination selection. Moreover, we compare the breeding value of recently-developed molecular techniques, including the advantage of high-throughput genotyping and the way and effect of gene editing in creating useful traits. Considering the current status and actual demands of rice breeding, we raise the strategy to take advantages of both traditional breeding resources and popular molecular techniques, which might pave the way to optimize the process of molecular design breeding in future.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revelation of rice molecular design breeding: the blend of tradition and modernity.\",\"authors\":\"Zhong Bian, Dong-Ping Cao, Wen-Shu Zhuang, Shu-Wei Zhang, Qiao-Quan Liu, Lin Zhang\",\"doi\":\"10.16288/j.yczz.23-092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As one of the major staple crops, rice feeds more than one half of the world population. Due to increasing population and dramatic climate change, the rice varieties with higher yield performance and excellent overall agronomic performance should be developed. The raise of molecular design breeding concept provides opportunity to get new breakthrough for variety development, and it is important to clarify the efficient gene combination during actual breeding. In this review, we summarize the recent advances about rice variety improvement either by marker assisted selection (MAS) breeding or popular gene editing technique, which will be beneficial to understand different aspects of the molecular design breeding. We provide genetic views for the classical MAS application, including the genetic effect of key genes and their combinations, the recurrent genome recovery rate at different backcross generations, linkage drag and recombination selection. Moreover, we compare the breeding value of recently-developed molecular techniques, including the advantage of high-throughput genotyping and the way and effect of gene editing in creating useful traits. Considering the current status and actual demands of rice breeding, we raise the strategy to take advantages of both traditional breeding resources and popular molecular techniques, which might pave the way to optimize the process of molecular design breeding in future.</p>\",\"PeriodicalId\":35536,\"journal\":{\"name\":\"遗传\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遗传\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.16288/j.yczz.23-092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.23-092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Revelation of rice molecular design breeding: the blend of tradition and modernity.
As one of the major staple crops, rice feeds more than one half of the world population. Due to increasing population and dramatic climate change, the rice varieties with higher yield performance and excellent overall agronomic performance should be developed. The raise of molecular design breeding concept provides opportunity to get new breakthrough for variety development, and it is important to clarify the efficient gene combination during actual breeding. In this review, we summarize the recent advances about rice variety improvement either by marker assisted selection (MAS) breeding or popular gene editing technique, which will be beneficial to understand different aspects of the molecular design breeding. We provide genetic views for the classical MAS application, including the genetic effect of key genes and their combinations, the recurrent genome recovery rate at different backcross generations, linkage drag and recombination selection. Moreover, we compare the breeding value of recently-developed molecular techniques, including the advantage of high-throughput genotyping and the way and effect of gene editing in creating useful traits. Considering the current status and actual demands of rice breeding, we raise the strategy to take advantages of both traditional breeding resources and popular molecular techniques, which might pave the way to optimize the process of molecular design breeding in future.