Dorota Leszczyńska, Alicja Szatko, Lucyna Papierska, Wojciech Zgliczyński, Piotr Glinicki
{"title":"库欣综合征的肌肉骨骼并发症。","authors":"Dorota Leszczyńska, Alicja Szatko, Lucyna Papierska, Wojciech Zgliczyński, Piotr Glinicki","doi":"10.5114/reum/169889","DOIUrl":null,"url":null,"abstract":"<p><p>Prolonged exposure to an excess of glucocorticosteroids (GCs), both endogenous and exogenous, leads to a wide range of comorbidities, including cardiovascular, metabolic, psychiatric, and musculoskeletal disorders. The latter comprise osteopenia and osteoporosis leading to skeletal fractures and myopathy. Although endogenous hypercortisolemia is a rare disorder, GCs are among the most frequently prescribed drugs, often administered chronically and despite multiple side effects, impossible to taper off due to therapeutic reasons. The pathophysiology of the effect of GC excess on bone often leads to fractures despite normal or low-normal bone mineral density and it includes direct (mainly disturbance in bone formation processes, through inactivation of the Wnt/β-catenin signalling pathway) and indirect mechanisms (through suppressing the gonadal and somatotrophic axis, and also through antagonizing vitamin D actions). Glucocorticosteroid-induced fast-twitch, glycolytic muscles atrophy occurs due to increased protein catabolism and impaired synthesis. Protein degradation is a result of activation of the ubiquitin proteasome and the lysosomes stimulated through overexpression of several atrogenes (such as FOXO-1 and atrogin-1). This review will discuss pathophysiology, clinical presentation, prevention, and management of GC-induced osteoporosis (including calcium and vitamin D supplementation, and bisphosphonates) and myopathy associated with GC excess.</p>","PeriodicalId":21312,"journal":{"name":"Reumatologia","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/20/35/RU-61-169889.PMC10515123.pdf","citationCount":"1","resultStr":"{\"title\":\"Musculoskeletal complications of Cushing syndrome.\",\"authors\":\"Dorota Leszczyńska, Alicja Szatko, Lucyna Papierska, Wojciech Zgliczyński, Piotr Glinicki\",\"doi\":\"10.5114/reum/169889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prolonged exposure to an excess of glucocorticosteroids (GCs), both endogenous and exogenous, leads to a wide range of comorbidities, including cardiovascular, metabolic, psychiatric, and musculoskeletal disorders. The latter comprise osteopenia and osteoporosis leading to skeletal fractures and myopathy. Although endogenous hypercortisolemia is a rare disorder, GCs are among the most frequently prescribed drugs, often administered chronically and despite multiple side effects, impossible to taper off due to therapeutic reasons. The pathophysiology of the effect of GC excess on bone often leads to fractures despite normal or low-normal bone mineral density and it includes direct (mainly disturbance in bone formation processes, through inactivation of the Wnt/β-catenin signalling pathway) and indirect mechanisms (through suppressing the gonadal and somatotrophic axis, and also through antagonizing vitamin D actions). Glucocorticosteroid-induced fast-twitch, glycolytic muscles atrophy occurs due to increased protein catabolism and impaired synthesis. Protein degradation is a result of activation of the ubiquitin proteasome and the lysosomes stimulated through overexpression of several atrogenes (such as FOXO-1 and atrogin-1). This review will discuss pathophysiology, clinical presentation, prevention, and management of GC-induced osteoporosis (including calcium and vitamin D supplementation, and bisphosphonates) and myopathy associated with GC excess.</p>\",\"PeriodicalId\":21312,\"journal\":{\"name\":\"Reumatologia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/20/35/RU-61-169889.PMC10515123.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reumatologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5114/reum/169889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RHEUMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reumatologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5114/reum/169889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
Musculoskeletal complications of Cushing syndrome.
Prolonged exposure to an excess of glucocorticosteroids (GCs), both endogenous and exogenous, leads to a wide range of comorbidities, including cardiovascular, metabolic, psychiatric, and musculoskeletal disorders. The latter comprise osteopenia and osteoporosis leading to skeletal fractures and myopathy. Although endogenous hypercortisolemia is a rare disorder, GCs are among the most frequently prescribed drugs, often administered chronically and despite multiple side effects, impossible to taper off due to therapeutic reasons. The pathophysiology of the effect of GC excess on bone often leads to fractures despite normal or low-normal bone mineral density and it includes direct (mainly disturbance in bone formation processes, through inactivation of the Wnt/β-catenin signalling pathway) and indirect mechanisms (through suppressing the gonadal and somatotrophic axis, and also through antagonizing vitamin D actions). Glucocorticosteroid-induced fast-twitch, glycolytic muscles atrophy occurs due to increased protein catabolism and impaired synthesis. Protein degradation is a result of activation of the ubiquitin proteasome and the lysosomes stimulated through overexpression of several atrogenes (such as FOXO-1 and atrogin-1). This review will discuss pathophysiology, clinical presentation, prevention, and management of GC-induced osteoporosis (including calcium and vitamin D supplementation, and bisphosphonates) and myopathy associated with GC excess.