Mariann Guzman-Espinoza, Minyoung Kim, Cindy Ow, Erica J. Hutchins
{"title":"“超越转录:转录后机制如何驱动神经嵴EMT”。","authors":"Mariann Guzman-Espinoza, Minyoung Kim, Cindy Ow, Erica J. Hutchins","doi":"10.1002/dvg.23553","DOIUrl":null,"url":null,"abstract":"<p>The neural crest is a stem cell population that originates from the ectoderm during the initial steps of nervous system development. Neural crest cells delaminate from the neuroepithelium by undergoing a spatiotemporally regulated epithelial-mesenchymal transition (EMT) that proceeds in a coordinated wave head-to-tail to exit from the neural tube. While much is known about the transcriptional programs and membrane changes that promote EMT, there are additional levels of gene expression control that neural crest cells exert at the level of RNA to control EMT and migration. Yet, the role of post-transcriptional regulation, and how it drives and contributes to neural crest EMT, is not well understood. In this mini-review, we explore recent advances in our understanding of the role of post-transcriptional regulation during neural crest EMT.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvg.23553","citationCount":"0","resultStr":"{\"title\":\"“Beyond transcription: How post-transcriptional mechanisms drive neural crest EMT”\",\"authors\":\"Mariann Guzman-Espinoza, Minyoung Kim, Cindy Ow, Erica J. Hutchins\",\"doi\":\"10.1002/dvg.23553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The neural crest is a stem cell population that originates from the ectoderm during the initial steps of nervous system development. Neural crest cells delaminate from the neuroepithelium by undergoing a spatiotemporally regulated epithelial-mesenchymal transition (EMT) that proceeds in a coordinated wave head-to-tail to exit from the neural tube. While much is known about the transcriptional programs and membrane changes that promote EMT, there are additional levels of gene expression control that neural crest cells exert at the level of RNA to control EMT and migration. Yet, the role of post-transcriptional regulation, and how it drives and contributes to neural crest EMT, is not well understood. In this mini-review, we explore recent advances in our understanding of the role of post-transcriptional regulation during neural crest EMT.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvg.23553\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dvg.23553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvg.23553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
“Beyond transcription: How post-transcriptional mechanisms drive neural crest EMT”
The neural crest is a stem cell population that originates from the ectoderm during the initial steps of nervous system development. Neural crest cells delaminate from the neuroepithelium by undergoing a spatiotemporally regulated epithelial-mesenchymal transition (EMT) that proceeds in a coordinated wave head-to-tail to exit from the neural tube. While much is known about the transcriptional programs and membrane changes that promote EMT, there are additional levels of gene expression control that neural crest cells exert at the level of RNA to control EMT and migration. Yet, the role of post-transcriptional regulation, and how it drives and contributes to neural crest EMT, is not well understood. In this mini-review, we explore recent advances in our understanding of the role of post-transcriptional regulation during neural crest EMT.