{"title":"安全增强型远程运动中心机械手的尺寸优化和逆运动学求解方法。","authors":"Fang Huang, Hongqiang Sang, Fen Liu, Rui Han","doi":"10.1002/rcs.2579","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>With the expansion of minimally invasive surgery (MIS) applications in surgery, the remote centre of motion (RCM) manipulator requires a more flexible workspace to meet different operation requirements. Thus, the mechanical structure and motion control of the RCM manipulator play important roles.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>A multi-objective genetic algorithm was exploited to maximise the kinematic performance and obtain a compact structure of the RCM manipulator. An inverse kinematic solution method is proposed to meet task accuracy and kinematic singularity avoidance constraints for safety motion control.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Simulation results demonstrate that there are significant improvements in the reachable workspace inside the abdominal cavity, the flexibility of the workspace, kinematic performance, and compactness of the RCM manipulator. Experiments verify the feasibility of the prototype and the validity of the proposed inverse kinematic solution method.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>This enhances the adaptability and safety of the RCM manipulator and provides potential prospects for MIS application.</p>\n </section>\n </div>","PeriodicalId":50311,"journal":{"name":"International Journal of Medical Robotics and Computer Assisted Surgery","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimensional optimisation and an inverse kinematic solution method of a safety-enhanced remote centre of motion manipulator\",\"authors\":\"Fang Huang, Hongqiang Sang, Fen Liu, Rui Han\",\"doi\":\"10.1002/rcs.2579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>With the expansion of minimally invasive surgery (MIS) applications in surgery, the remote centre of motion (RCM) manipulator requires a more flexible workspace to meet different operation requirements. Thus, the mechanical structure and motion control of the RCM manipulator play important roles.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>A multi-objective genetic algorithm was exploited to maximise the kinematic performance and obtain a compact structure of the RCM manipulator. An inverse kinematic solution method is proposed to meet task accuracy and kinematic singularity avoidance constraints for safety motion control.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Simulation results demonstrate that there are significant improvements in the reachable workspace inside the abdominal cavity, the flexibility of the workspace, kinematic performance, and compactness of the RCM manipulator. Experiments verify the feasibility of the prototype and the validity of the proposed inverse kinematic solution method.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>This enhances the adaptability and safety of the RCM manipulator and provides potential prospects for MIS application.</p>\\n </section>\\n </div>\",\"PeriodicalId\":50311,\"journal\":{\"name\":\"International Journal of Medical Robotics and Computer Assisted Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medical Robotics and Computer Assisted Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rcs.2579\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Robotics and Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcs.2579","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
Dimensional optimisation and an inverse kinematic solution method of a safety-enhanced remote centre of motion manipulator
Background
With the expansion of minimally invasive surgery (MIS) applications in surgery, the remote centre of motion (RCM) manipulator requires a more flexible workspace to meet different operation requirements. Thus, the mechanical structure and motion control of the RCM manipulator play important roles.
Methods
A multi-objective genetic algorithm was exploited to maximise the kinematic performance and obtain a compact structure of the RCM manipulator. An inverse kinematic solution method is proposed to meet task accuracy and kinematic singularity avoidance constraints for safety motion control.
Results
Simulation results demonstrate that there are significant improvements in the reachable workspace inside the abdominal cavity, the flexibility of the workspace, kinematic performance, and compactness of the RCM manipulator. Experiments verify the feasibility of the prototype and the validity of the proposed inverse kinematic solution method.
Conclusions
This enhances the adaptability and safety of the RCM manipulator and provides potential prospects for MIS application.
期刊介绍:
The International Journal of Medical Robotics and Computer Assisted Surgery provides a cross-disciplinary platform for presenting the latest developments in robotics and computer assisted technologies for medical applications. The journal publishes cutting-edge papers and expert reviews, complemented by commentaries, correspondence and conference highlights that stimulate discussion and exchange of ideas. Areas of interest include robotic surgery aids and systems, operative planning tools, medical imaging and visualisation, simulation and navigation, virtual reality, intuitive command and control systems, haptics and sensor technologies. In addition to research and surgical planning studies, the journal welcomes papers detailing clinical trials and applications of computer-assisted workflows and robotic systems in neurosurgery, urology, paediatric, orthopaedic, craniofacial, cardiovascular, thoraco-abdominal, musculoskeletal and visceral surgery. Articles providing critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies, commenting on ease of use, or addressing surgical education and training issues are also encouraged. The journal aims to foster a community that encompasses medical practitioners, researchers, and engineers and computer scientists developing robotic systems and computational tools in academic and commercial environments, with the intention of promoting and developing these exciting areas of medical technology.