{"title":"成纤维细胞生长因子9的基本原理。","authors":"","doi":"10.1016/j.diff.2023.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>Fibroblast growth factor 9 (FGF9) was first identified during a screen for factors acting on cells of the central nervous system (CNS). Research over the subsequent two decades has revealed this protein to be a critically important and elegantly regulated growth factor. A hallmark control feature is reciprocal compartmentalization, particularly during development, with epithelium as a dominant source and mesenchyme a prime target. This mesenchyme selectivity is accomplished by the high affinity of FGF9 to the IIIc isoforms of FGFR1, 2, and 3. FGF9 is expressed widely in the embryo, including the developing heart and lungs, and more selectively in the adult, including the CNS and kidneys. Global <em>Fgf9</em>-null mice die shortly after birth due to respiratory failure from hypoplastic lungs. As well, their hearts are dilated and poorly vascularized, the skeleton is small, the intestine is shortened, and male-to-female sex reversal can be found. Conditional <em>Fgf9</em>-null mice have revealed CNS phenotypes, including ataxia and epilepsy. In humans, FGF9 variants have been found to underlie multiple synostoses syndrome 3, a syndrome characterized by multiple joint fusions. Aberrant FGF9 signaling has also been implicated in differences of sex development and cancer, whereas vascular stabilizing effects of FGF9 could benefit chronic diseases. This primer reviews the attributes of this vital growth factor.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301468123000701/pdfft?md5=23f4eeadf978eaf63e5001caf117f167&pid=1-s2.0-S0301468123000701-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The fundamentals of fibroblast growth factor 9\",\"authors\":\"\",\"doi\":\"10.1016/j.diff.2023.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fibroblast growth factor 9 (FGF9) was first identified during a screen for factors acting on cells of the central nervous system (CNS). Research over the subsequent two decades has revealed this protein to be a critically important and elegantly regulated growth factor. A hallmark control feature is reciprocal compartmentalization, particularly during development, with epithelium as a dominant source and mesenchyme a prime target. This mesenchyme selectivity is accomplished by the high affinity of FGF9 to the IIIc isoforms of FGFR1, 2, and 3. FGF9 is expressed widely in the embryo, including the developing heart and lungs, and more selectively in the adult, including the CNS and kidneys. Global <em>Fgf9</em>-null mice die shortly after birth due to respiratory failure from hypoplastic lungs. As well, their hearts are dilated and poorly vascularized, the skeleton is small, the intestine is shortened, and male-to-female sex reversal can be found. Conditional <em>Fgf9</em>-null mice have revealed CNS phenotypes, including ataxia and epilepsy. In humans, FGF9 variants have been found to underlie multiple synostoses syndrome 3, a syndrome characterized by multiple joint fusions. Aberrant FGF9 signaling has also been implicated in differences of sex development and cancer, whereas vascular stabilizing effects of FGF9 could benefit chronic diseases. This primer reviews the attributes of this vital growth factor.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0301468123000701/pdfft?md5=23f4eeadf978eaf63e5001caf117f167&pid=1-s2.0-S0301468123000701-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301468123000701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468123000701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Fibroblast growth factor 9 (FGF9) was first identified during a screen for factors acting on cells of the central nervous system (CNS). Research over the subsequent two decades has revealed this protein to be a critically important and elegantly regulated growth factor. A hallmark control feature is reciprocal compartmentalization, particularly during development, with epithelium as a dominant source and mesenchyme a prime target. This mesenchyme selectivity is accomplished by the high affinity of FGF9 to the IIIc isoforms of FGFR1, 2, and 3. FGF9 is expressed widely in the embryo, including the developing heart and lungs, and more selectively in the adult, including the CNS and kidneys. Global Fgf9-null mice die shortly after birth due to respiratory failure from hypoplastic lungs. As well, their hearts are dilated and poorly vascularized, the skeleton is small, the intestine is shortened, and male-to-female sex reversal can be found. Conditional Fgf9-null mice have revealed CNS phenotypes, including ataxia and epilepsy. In humans, FGF9 variants have been found to underlie multiple synostoses syndrome 3, a syndrome characterized by multiple joint fusions. Aberrant FGF9 signaling has also been implicated in differences of sex development and cancer, whereas vascular stabilizing effects of FGF9 could benefit chronic diseases. This primer reviews the attributes of this vital growth factor.