无症状感染者、病毒核酸检测重阳性和恢复期新冠肺炎病例的不同肠道微生物群和健康结果。

IF 4.5 Q1 MICROBIOLOGY
mLife Pub Date : 2022-06-01 Epub Date: 2022-06-15 DOI:10.1002/mlf2.12022
Ruqin Lin, Mingzhong Xiao, Shanshan Cao, Yu Sun, Linhua Zhao, Xiaoxiao Mao, Peng Chen, Xiaolin Tong, Zheyuan Ou, Hui Zhu, Dong Men, Xiaodong Li, Yiqun Deng, Xian-En Zhang, Jikai Wen
{"title":"无症状感染者、病毒核酸检测重阳性和恢复期新冠肺炎病例的不同肠道微生物群和健康结果。","authors":"Ruqin Lin, Mingzhong Xiao, Shanshan Cao, Yu Sun, Linhua Zhao, Xiaoxiao Mao, Peng Chen, Xiaolin Tong, Zheyuan Ou, Hui Zhu, Dong Men, Xiaodong Li, Yiqun Deng, Xian-En Zhang, Jikai Wen","doi":"10.1002/mlf2.12022","DOIUrl":null,"url":null,"abstract":"<p><p>Gut microbiota composition is suggested to associate with coronavirus disease 2019 (COVID-19) severity, but the impact of gut microbiota on health outcomes is largely unclear. We recruited 81 individuals from Wuhan, China, including 13 asymptomatic infection cases (Group A), 24 COVID-19 convalescents with adverse outcomes (Group C), 31 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) re-positive cases (Group D), and 13 non-COVID-19 healthy controls (Group H). The microbial features of Groups A and D were similar and exhibited higher gut microbial diversity and more abundant short-chain fatty acid (SCFA)-producing species than Group C. Group C was enriched with opportunistic pathogens and virulence factors related to adhesion and toxin production. The abundance of SCFA-producing species was negatively correlated, while <i>Escherichia coli</i> was positively correlated with adverse outcomes. All three groups (A, C, and D) were enriched with the mucus-degrading species <i>Akkermansia muciniphila</i>, but decreased with <i>Bacteroides</i>-encoded carbohydrate-active enzymes. The pathways of vitamin B6 metabolic and folate biosynthesis were decreased, while selenocompound metabolism was increased in the three groups. Specifically, the secondary bile acid (BA) metabolic pathway was enriched in Group A. Antibiotic resistance genes were common among the three groups. Conclusively, the gut microbiota was related to the health outcomes of COVID-19. Dietary supplementations (SCFAs, BA, selenium, folate, vitamin B6) may be beneficial to COVID-19 patients.</p>","PeriodicalId":94145,"journal":{"name":"mLife","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9349603/pdf/","citationCount":"0","resultStr":"{\"title\":\"Distinct gut microbiota and health outcomes in asymptomatic infection, viral nucleic acid test re-positive, and convalescent COVID-19 cases.\",\"authors\":\"Ruqin Lin, Mingzhong Xiao, Shanshan Cao, Yu Sun, Linhua Zhao, Xiaoxiao Mao, Peng Chen, Xiaolin Tong, Zheyuan Ou, Hui Zhu, Dong Men, Xiaodong Li, Yiqun Deng, Xian-En Zhang, Jikai Wen\",\"doi\":\"10.1002/mlf2.12022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gut microbiota composition is suggested to associate with coronavirus disease 2019 (COVID-19) severity, but the impact of gut microbiota on health outcomes is largely unclear. We recruited 81 individuals from Wuhan, China, including 13 asymptomatic infection cases (Group A), 24 COVID-19 convalescents with adverse outcomes (Group C), 31 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) re-positive cases (Group D), and 13 non-COVID-19 healthy controls (Group H). The microbial features of Groups A and D were similar and exhibited higher gut microbial diversity and more abundant short-chain fatty acid (SCFA)-producing species than Group C. Group C was enriched with opportunistic pathogens and virulence factors related to adhesion and toxin production. The abundance of SCFA-producing species was negatively correlated, while <i>Escherichia coli</i> was positively correlated with adverse outcomes. All three groups (A, C, and D) were enriched with the mucus-degrading species <i>Akkermansia muciniphila</i>, but decreased with <i>Bacteroides</i>-encoded carbohydrate-active enzymes. The pathways of vitamin B6 metabolic and folate biosynthesis were decreased, while selenocompound metabolism was increased in the three groups. Specifically, the secondary bile acid (BA) metabolic pathway was enriched in Group A. Antibiotic resistance genes were common among the three groups. Conclusively, the gut microbiota was related to the health outcomes of COVID-19. Dietary supplementations (SCFAs, BA, selenium, folate, vitamin B6) may be beneficial to COVID-19 patients.</p>\",\"PeriodicalId\":94145,\"journal\":{\"name\":\"mLife\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9349603/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mLife\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/mlf2.12022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mlf2.12022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肠道微生物群的组成被认为与2019冠状病毒病(新冠肺炎)的严重程度有关,但肠道微生物群对健康结果的影响在很大程度上尚不清楚。我们招募了来自中国武汉的81名患者,包括13例无症状感染者(A组)、24例有不良后果的新冠肺炎康复者(C组)、31例严重急性呼吸综合征冠状病毒2(SARS-CoV-2)重阳性病例(D组)和13例非新冠肺炎健康对照者(H组)。A组和D组的微生物特征相似,表现出比C组更高的肠道微生物多样性和更丰富的短链脂肪酸(SCFA)产生物种。C组富含机会性病原体和与粘附和毒素产生有关的毒力因子。SCFA产生物种的丰度呈负相关,而大肠杆菌与不良结果呈正相关。所有三组(A、C和D)都富含粘液降解物种Akkermansia muciniphila,但随着拟杆菌编码的碳水化合物活性酶的增加而减少。三组的维生素B6代谢和叶酸生物合成途径减少,而硒复合代谢增加。具体而言,次级胆汁酸(BA)代谢途径在A组中富集。三组中常见抗生素耐药性基因。总之,肠道微生物群与新冠肺炎的健康结果有关。膳食补充剂(SCFA、BA、硒、叶酸、维生素B6)可能对新冠肺炎患者有益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distinct gut microbiota and health outcomes in asymptomatic infection, viral nucleic acid test re-positive, and convalescent COVID-19 cases.

Gut microbiota composition is suggested to associate with coronavirus disease 2019 (COVID-19) severity, but the impact of gut microbiota on health outcomes is largely unclear. We recruited 81 individuals from Wuhan, China, including 13 asymptomatic infection cases (Group A), 24 COVID-19 convalescents with adverse outcomes (Group C), 31 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) re-positive cases (Group D), and 13 non-COVID-19 healthy controls (Group H). The microbial features of Groups A and D were similar and exhibited higher gut microbial diversity and more abundant short-chain fatty acid (SCFA)-producing species than Group C. Group C was enriched with opportunistic pathogens and virulence factors related to adhesion and toxin production. The abundance of SCFA-producing species was negatively correlated, while Escherichia coli was positively correlated with adverse outcomes. All three groups (A, C, and D) were enriched with the mucus-degrading species Akkermansia muciniphila, but decreased with Bacteroides-encoded carbohydrate-active enzymes. The pathways of vitamin B6 metabolic and folate biosynthesis were decreased, while selenocompound metabolism was increased in the three groups. Specifically, the secondary bile acid (BA) metabolic pathway was enriched in Group A. Antibiotic resistance genes were common among the three groups. Conclusively, the gut microbiota was related to the health outcomes of COVID-19. Dietary supplementations (SCFAs, BA, selenium, folate, vitamin B6) may be beneficial to COVID-19 patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信